
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Next-Generation Orchestration Frameworks
for Multicluster Cloud-Edge Integration

Jakob Kempter

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis

Next-Generation Orchestration Frameworks
for Multicluster Cloud-Edge Integration

Orchestrierungs-Frameworks der nächsten
Generation für Multicluster

Cloud-Edge-Integration

Author: Jakob Kempter
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Dr. Nitinder Mohan, Giovanni Bartolomeo
Submission Date: 14.06.2024

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 14.06.2024 Jakob Kempter

Acknowledgments

I am deeply grateful to my friends and colleagues who have provided advice and
support over the years. I consider myself fortunate to have had you by my side.

My heartfelt thanks go to my parents for their unwavering support and encourage-
ment throughout my studies; this achievement would not have been possible without
them. A special thank you to my girlfriend Julia for her constant encouragement and
belief in me.

I would also like to thank my university, TUM, and all the professors and assistants
who guided me along this path. Special thanks to Giovanni Bartolomeo, my supervisor
during the final thesis at TUM, for his invaluable guidance and support, as well as to
Nitinder Mohan.

Many thanks to my supervisor at inovex, Maximilian Bischoff, for his invaluable
technical expertise and generous investment of time.

Thank you all!

Munich, June 2024

Abstract

Managing and coordinating multiple clusters across cloud and edge environments
poses numerous challenges, including the need for scalability, seamless communication,
and infrastructure abstraction. Services in such environments can be deployed either
in the cloud or at the edge. While edge networks are prone to failures due to the
unpredictable behavior of edge nodes, cloud environments typically offer more stable
networks. Deploying applications at the edge brings them closer to users, whereas
resource-intensive applications are better suited for cloud deployment. This thesis
presents a practical implementation of an integration tool that seamlessly connects
Oakestra, an orchestration framework for edge computing, and Kubernetes, the defacto
standard for cloud orchestration. By leveraging Kubernetes extensions such as Custom
Resource Definitions (CRDs) and Controllers, Kubernetes Clusters can be used as
Oakestra child clusters to enable cloud-to-edge multi-cluster operations. Additionally,
a new Container Network Interface (CNI) is developed, incorporating Oakestra’s
networking technology. Although the architecture limits direct comparison with current
alternatives, the integration’s performance in terms of overhead and deployment time
is comparable to competitive solutions designed for Kubernetes-native and cloud
environments. Furthermore, it is demonstrated that the integration of Kubernetes
clusters does not adversely impact the Oakestra root.

iv

Kurzfassung

Die Verwaltung und Koordinierung mehrerer Cluster in Cloud- und Edge-Umgebungen
ist mit zahlreichen Herausforderungen verbunden, darunter die Notwendigkeit von
Skalierbarkeit, nahtloser Kommunikation und Abstraktion der Infrastruktur. Dienste
in solchen Umgebungen können entweder in der Cloud oder am Edge bereitgestellt
werden. Während Edge-Netzwerke aufgrund des unvorhersehbaren Verhaltens von
Edge-Knoten anfällig für Ausfälle sind, bieten Cloud-Umgebungen in der Regel sta-
bilere Netzwerke. Die Bereitstellung von Anwendungen am Edge bringt sie näher an
die Nutzer heran, während ressourcenintensive Anwendungen besser für die Bereitstel-
lung in der Cloud geeignet sind. In dieser Arbeit wird eine praktische Implementierung
eines Integrations vorgestellt, das Oakestra, ein Orchestrierungs-Framework für Edge-
Computing, und Kubernetes, den Standard für die Cloud-Orchestrierung, nahtlos
miteinander verbindet. Durch die Nutzung von Kubernetes-Erweiterungen wie Cus-
tom Resource Definitions (CRDs) und Controllern können Kubernetes-Cluster als
Oakestra-Untercluster verwendet werden, um Cloud-to-Edge-Multicluster-Operationen
zu ermöglichen. Darüber hinaus wird ein neues Container Network Interface (CNI)
entwickelt, das die Netzwerktechnologie von Oakestra einbezieht. Obwohl die Ar-
chitektur den direkten Vergleich mit aktuellen Alternativen einschränkt, ist die Leistung
der Integration in Bezug auf Overhead und Bereitstellungszeit vergleichbar mit konkur-
rierenden Lösungen, die für Kubernetes-native und Cloud-Umgebungen entwickelt
wurden. Außerdem wird gezeigt, dass die Integration von Kubernetes-Clustern keine
negativen Auswirkungen auf den Oakestra-Stamm Komponente hat.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Contribution . 3
1.4 Thesis Structure . 3

2 Background 5
2.1 Multi-Cluster Orchestration . 5

2.1.1 Architectural Approaches . 8
2.1.2 Versatility in Cluster Management 12
2.1.3 Practical Applications and Use Cases 13

2.2 Multi-Cluster Communication . 15
2.2.1 Container Networking . 15
2.2.2 Inter-Cluster Networking Solutions 16

2.3 Edge Cloud Continuum . 17
2.3.1 Reference Architectures . 19
2.3.2 Paradigms . 21
2.3.3 Edge Cloud Communication . 21
2.3.4 Edge Cloud Orchestration . 24

2.4 Existing Orchestration Tools, Frameworks, and libraries 24
2.4.1 Multi-Cluster Orchestration . 25
2.4.2 Cloud-To-Edge Orchestration . 29

3 Oakestra/Kubernetes Integration 33
3.1 Requirements . 33
3.2 System Design . 36

3.2.1 Integration Approaches . 36

vi

Contents

3.2.2 System Components . 38
3.3 Orchestration . 41

3.3.1 Oakestra Controller Manager . 41
3.3.2 Orchestration Flow . 44
3.3.3 State Handling . 45
3.3.4 Scheduling . 46

3.4 Communication . 46
3.4.1 Container Communication . 46
3.4.2 Communication between Components 49

3.5 Set Up Kubernetes as Oakestra Cluster 49
3.5.1 Prerequisites . 49
3.5.2 Set Up Oakestra . 50
3.5.3 Set Up Kubernetes . 50
3.5.4 Install Kubernetes Plugin . 50

4 Evaluation 53
4.1 Experimental Set Up . 53
4.2 Evaluation Results . 54

4.2.1 Overhead Plugin . 55
4.2.2 Overhead Management . 59
4.2.3 Deployment Time . 65
4.2.4 Impact Oakestra Root . 67

5 Conclusion 69
5.1 Limitations and Future Work . 70

List of Figures 72

List of Tables 73

Bibliography 74

Appendix 81

vii

1 Introduction

1.1 Problem Statement

In recent years, cloud orchestration has gained increasing attention, facilitated by a
diverse array of tools enabling the seamless management and deployment of cloud re-
sources and applications [20]. However, cloud orchestration is not the optimal solution
in some situations, particularly when data processing necessitates proximity to the user
or device. Edge computing, which involves placing computing resources closer to the
end user, has emerged as a significant trend. Nonetheless, this technology demands
specialized orchestration within these edge environments. This approach effectively
addresses crucial operational requirements such as reduced latency and enhanced
data trust preservation [70]. Similarly, many orchestration tools tailored specifically
for the edge facilitate application deployment within this environment. Nonetheless,
what remains lacking is the integration of these two paradigms: an orchestrator that
amalgamates the benefits of both cloud and edge, facilitating deployment across both
environments seamlessly.
However, this new amalgamation also presents several challenges that are currently
being explored by research. The paradigms of cloud and edge differ significantly in
fundamental architecture and communication. In the cloud environment, virtualization
of cloud resources can create a homogeneous depiction of instances, simplifying service
provisioning. Conversely, such homogeneity is absent in the edge environment, as each
device may possess varying specifications and architectures. Furthermore, communi-
cation poses a challenge; within a data center, constituting a cloud environment, all
instances are interconnected via cables, facilitating swift and straightforward commu-
nication between instances. Edge devices, however, are not part of this network and
exhibit diverse forms of communication.
The existing few endeavors towards Cloud to Edge orchestrators predominantly rely on
cloud-based technologies and often fail to devise a novel approach tailored specifically
for the edge domain. Additionally, there are currently scant industrial solutions for
Cloud to Edge orchestration that adequately encompass all the requisites and potentials
of cloud-based solutions.
Applications deployed in the cloud or within the edge environment must communicate
seamlessly, whether cloud-to-cloud, cloud-to-edge, or edge-to-edge. Services should be

1

1 Introduction

deployed in the cloud or edge environments based on the application’s requirements.
The cloud remains suitable if extensive resources are required, but specific latency is
not critical. However, where local data processing is crucial, edge instances become
preferable. Yet, as requirements change, the ability to migrate seamlessly to the edge
environment is essential. Scalability across both environments, alongside robust failure-
handling mechanisms, is also crucial. While generally reliable, centralized cloud regions
may fail, posing significant challenges that decentralized edge regions can mitigate,
demonstrating the interdependence between cloud and edge for resilient infrastructure.
Conversely, edge region failures, though typically less impactful globally, underscore
the necessity of cloud backup systems [70].

1.2 Motivation

The evolution of computing landscapes is increasingly characterized by the conver-
gence of edge and cloud technologies, responding to the growing demand for high
computational power and low-latency data processing. In such contexts, multi-cluster
architectures emerge as critical, allowing seamless data and workload management
across disparate environments. The rationale for integrating multi-cluster strategies
lies in their ability to provide robust, scalable solutions that leverage the strengths of
both edge and cloud computing. Edge computing addresses the need for real-time data
processing close to data sources, while cloud computing offers substantial resources
and power for more intensive computations.
However, current orchestration solutions often face challenges. On one side, tradi-
tional cloud orchestrators like Kubernetes are well-suited for handling high-resource
demands but typically struggle with the decentralized nature required for effective
edge computing. They generally lack native support for multi-cluster environments,
relying instead on external projects to bridge this gap. On the other side, edge-focused
orchestration platforms excel in managing distributed devices in resource-constrained
environments but do not seamlessly extend to cloud environments.
Oakestra, an orchestration platform initially developed for the edge, exemplifies this
divide. It has proven effectiveness in managing communication among edge devices,
organizing them into manageable clusters, optimizing the distribution of management
tasks, and reducing overhead. This thesis aims to extend Oakestra’s capabilities to
include cloud orchestration. By doing so, it aims to initiate services that demand higher
resources, utilizing both cloud data centers and local edge devices. The overarching
goal is to enable comprehensive orchestration and management across both environ-
ments through a unified endpoint.
This thesis seeks to bridge the gap between the isolated domains of edge and cloud

2

1 Introduction

computing by integrating cloud orchestration capabilities into Oakestra’s existing multi-
cluster management framework. The envisioned extension will facilitate seamless
integration with existing cloud orchestrators, enhancing Oakestra’s utility and enabling
it to support a broader range of computational scenarios. This endeavor not only
leverages Oakestra’s proven strengths in edge orchestration but also introduces new
opportunities for managing distributed computing resources more effectively, thereby
advancing the capabilities of both edge and cloud computing frameworks.

1.3 Contribution

The core contribution of this thesis is the extension of Oakestra to integrate seamlessly
with Kubernetes, establishing it as a complementary platform to the de facto standard
for container orchestration. This integration enhances Oakestra’s capabilities, allowing
it to support multi-cluster orchestration from cloud to edge. Furthermore, the thesis
presents a blueprint for incorporating other orchestration platforms, broadening the
scope and utility of the Oakestra framework. Lastly, it defines the essential capabilities
and functionalities required for a multi-cluster cloud-to-edge orchestrator, providing a
detailed framework and guidelines for future developments in this area. This contribu-
tion bridges the gap between edge-specific applications and broader cloud capabilities,
fostering more robust and versatile computing environments. A detailed listing of
previous and upcoming technologies and tools is provided to support these innovations,
enriching the historical context and foundational knowledge required for advancing
this field.

1.4 Thesis Structure

This thesis is structured to systematically address and elaborate on the integration
of multi-cluster orchestration across cloud and edge environments, beginning with a
foundational discussion in Chapter 1, which introduces the problem statement, outlines
the motivation for this research, delineates the contributions, and provides an overview
of the thesis structure. Chapter 2 delves into the essential background required for
understanding the current technologies in multi-cluster orchestration, starting with
an analysis of architectural approaches and versatility in cluster management. This
chapter also explores the edge-cloud continuum, including network resilience and the
paradigms shaping this field, and concludes with a review of existing orchestration
tools, frameworks, and libraries that are pivotal in the industry today. In Chapter
3, the focus shifts to the practical application of these concepts through integrating
Oakestra with Kubernetes, detailing the system design, requirements, orchestration

3

1 Introduction

mechanisms, and communication protocols involved. Chapter 4 thoroughly evaluates
the implemented system, assessing factors such as overhead, latencies, and bandwidth,
and discusses the benefits and challenges observed. The thesis culminates in Chapter
5, which critically reflects the limitations encountered during the study and outlines
prospective future work aimed at refining and expanding the orchestration capabilities
between edge and cloud environments. This structure is designed to guide the reader
through a logical progression from foundational concepts to practical application and
critical evaluation, ultimately leading to a conclusive discussion on the future directions
of this research.

4

2 Background

2.1 Multi-Cluster Orchestration

Multi-Cluster Orchestration refers to coordinating and managing applications and
services’ deployment, scaling, and operation across multiple clusters in a distributed
computing environment. This involves efficiently allocating resources, load balancing,
and ensuring high availability and fault tolerance across the interconnected clusters.
Multi-cluster orchestration enables the seamless integration and coordination of diverse
computing resources, facilitating the execution of complex tasks and workflows across
a network of connected clusters. This approach optimizes resource utilization, improves
scalability, and centralizes distributed application management, ultimately improving
overall system performance, reliability, and availability [40].

Traditionally, organizations have developed custom-built multi-cluster orchestration
tools to cater to specific needs and infrastructures, effectively managing applications
across various clusters. These custom solutions were essential due to the absence of a
universally accepted standard in multi-cluster orchestration, making bespoke systems
necessary for handling complex deployment and resource optimization scenarios within
unique operational environments. Popular tools include Helm, Operators, GitOps
frameworks such as Argo and Flux, Kustomize, and the Operator pattern, which have
become central to multi-cluster management strategies [14].

Recent trends, however, show a shift towards standardized multi-cluster orchestration
solutions, which have started to permeate the market more broadly. Modern solutions
bring enhanced features, scalability, and the advantage of established best practices
supported by a larger community. This shift is motivated by the need for more robust
and scalable orchestration tools to meet the intricate demands of managing distributed
applications in today’s complex IT landscapes [30].

Centralized Management

One of the key challenges in multi-cluster orchestration is achieving centralized man-
agement across diverse clusters. As organizations operate applications across various
clusters, ensuring consistent configuration, monitoring, and management becomes
increasingly complex. This involves controlling and coordinating tasks, policies, and

5

2 Background

resources across distributed clusters from a single control point. By implementing
a centralized management approach, maintainers gain better visibility and control
over their distributed infrastructure, resulting in more efficient resource allocation,
simplified policy enforcement, and improved operational consistency. In addition,
centralized management enables the implementation of global policies and enforcement
compliance standards across all clusters, reducing operational overheads and improving
overall governance [23, 52].

Multi-Cloud vs Multi-Cluster

In distributed computing, it’s crucial to distinguish between multi-cluster and multi-
cloud strategies, although both aim to optimize how resources are orchestrated and
utilized. A multi-cluster setup involves managing multiple clusters under a unified
interface, where each cluster functions independently with its own specific configura-
tions and resources dedicated to distinct workloads or applications. This arrangement
is designed to enhance resource allocation and manage workloads efficiently across
diverse environments [52].

On the other hand, a multi-cloud strategy utilizes multiple cloud computing ser-
vices from various providers such as AWS, Azure, or Google Cloud. Organizations
adopt this approach to mitigate risks such as vendor lock-in [50] to capitalize on cost
efficiencies and specialized services offered by different cloud vendors. While multi-
cluster and multi-cloud architectures share similar goals—like improving resilience and
scalability—they cater to different strategic needs and are implemented differently.

Integrating multi-cluster orchestration within a multi-cloud framework provides
substantial benefits. It allows organizations to manage their applications across different
cloud platforms without being confined to a single provider, thus enhancing flexibility
and resource utilization. This strategy enables the seamless orchestration of resources
across various cloud environments, increasing the portability of applications and data.
Organizations can shift or replicate workloads between cloud platforms as per their
changing requirements, leveraging specific advantages of each cloud provider while
maintaining robust and flexible infrastructure management.

Network Latency and Performance

Network latency and performance are critical in multi-cluster orchestration, especially
when synchronizing data between geographically distributed clusters. High network
latency may significantly impact the performance of distributed applications, resulting
in delays and reduced responsiveness. To mitigate these issues, edge computing can
process data closer to the source to reduce latency or launch multiple copies of clusters

6

2 Background

in geographically dispersed data centers to be closer to the user. In addition, clusters
could be launched with different computing resources, with very powerful resources to
ensure performance, but also less powerful ones, depending on the requirements of the
services [1].

Data Consistency

Maintaining data consistency across multiple clusters presents a significant challenge,
especially under conditions such as network partitioning and when managing large
volumes of data. The complexity arises from ensuring that all nodes, possibly spread
across various locations, have the same data at any given time. Depending on the
application’s specific needs, distributed databases and data stores can be employed to
address this, which support different consistency models—such as eventual consistency
or strong consistency. Innovative technologies like Conflict-free Replicated Data Types
(CRDTs) and distributed ledgers offer solutions for maintaining data consistency with-
out traditional locking mechanisms. These technologies allow for concurrent updates
that can be merged without conflicts, enhancing the system’s ability to handle data
across disparate clusters efficiently and reliably [5, 64].

Security and Compliance

Securing a multi-cluster environment encompasses several critical aspects, including
protecting data in transit and at rest, managing access across different clusters, and
adhering to various regulatory requirements. These challenges necessitate robust
solutions to ensure comprehensive security and compliance. Implementing centralized
security policies through service meshes can significantly enhance security at the
communication level between services. Data encryption at rest and in transit is crucial
for protecting sensitive information from unauthorized access. Adopting identity and
access management (IAM) solutions that integrate seamlessly across various clusters
and cloud environments is essential for effective authentication and authorization
management. These IAM solutions help maintain strict access controls, ensuring that
only authorized users and services can access specific resources, thus upholding the
integrity and confidentiality of the data within a multi-cluster architecture [64].

Multi-Cluster Management vs. Multi-Cluster Orchestration

Multi-cluster orchestration is a relatively recent development, although multi-cluster
management has been established for some time. This involves managing multiple
clusters across various production environments or distinct operational stages such as
development, staging, and production. Each environment employs a consistent cluster

7

2 Background

configuration but remains separate, enabling centralized governance of these clusters.
This setup primarily addresses the creation and administration of clusters rather than
the orchestration of services and applications, delineating a fundamental component of
multi-cluster orchestrator capabilities [29].

Workload isolation

Workload isolation is a significant advantage of multi-cluster architectures, providing
complete independence between clusters. In contrast to single-cluster setups, where
namespaces offer only limited isolation susceptible to inherent security constraints,
multi-cluster environments ensure that problems such as cluster failures or configura-
tion changes remain isolated to the specific cluster affected [7].

2.1.1 Architectural Approaches

In the context of multi-cluster orchestration, the architecture plays a pivotal role in
defining the structure and organization of the distributed computing environment. The
architecture encompasses the design, layout, and interconnections of the clusters, the
allocation of resources, and the orchestration of workloads across these clusters. One
fundamental aspect of multi-cluster architecture is the delineation of levels, ranging
from two to three or even more, each representing a distinct layer of the orchestration
framework. This section will explore the architectural models prevalent in multi-cluster
orchestration, including depicting two-level, three-level, and potentially higher-level
architectures. Additionally, it will delve into the implications and considerations
associated with each architectural configuration, providing insights into the diverse
approaches for orchestrating and managing applications across multiple clusters.

Traditional cluster architectures typically consist of two levels: multiple nodes where
one node serves as the control plane and the remaining nodes act as workers. This
setup facilitates the management and execution of tasks within a single cluster environ-
ment. However, as organizations scale and adopt distributed systems across various
environments, the need arises for orchestrating multiple clusters efficiently.

The architecture of Kubernetes fits well with the two-tier cluster model described
above, which comprises a control plane and worker nodes. In Kubernetes, the control
plane is responsible for managing the state and configuration of the cluster, including
scheduling and orchestrating tasks. This control plane usually includes components
such as the API server, the controller manager, and the scheduler. The worker nodes, on
the other hand, execute the workloads. Each node runs pods, the smallest deployable
units managed by Kubernetes, which actually run containerized applications. The
worker nodes also have components such as kubelet, which interacts with the control

8

2 Background

plane to manage the pods and containers on its node, and kube-proxy, which handles
network communication [32].

Multi-cluster architectural designs can be categorized into segmentation and replica-
tion strategies. In segmentation, the application is partitioned into distinct components,
typically Kubernetes services, distributed across multiple clusters based on operational
needs. Conversely, the replication strategy involves creating identical replicas of a Ku-
bernetes cluster across various data centers in different locations, offering redundancy
and enhancing application availability in case a cluster fails [60].

2-Level Architecture with no additional control layer

In the expanded multi-cluster orchestration model, each cluster centers around a
main node that acts as a hub for control and communication, similar to traditional
architectures. However, these main nodes across different clusters are interconnected,
as seen in figure 2.1, enabling them to communicate and collaborate effectively. This
network of main nodes can redistribute tasks and share resources based on real-time
requirements and available capacity, optimizing workload balance and resource usage.

Figure 2.1: Architecture Multi-Cluster: 2-Layer

Incorporating elements from distributed database systems, this architecture also
introduces a dynamic leadership and state management system [71]. A designated

9

2 Background

leader among the main nodes would coordinate the clusters and manage the overall
state from which tasks are assigned and resources are distributed. This leader is not
fixed but can be re-elected based on network conditions and node availability. If the
current leader node fails or becomes unreachable, a new leader is elected among the
nodes to ensure continuity and reliability of operations.

This leadership model, combined with stateful awareness of each node’s status
and capacity, allows for intelligent decision-making in task distribution and resource
allocation. By implementing redundancy and failover mechanisms, tasks can be
redirected to other clusters in case of a main node failure, maintaining operational
continuity and enhancing system resilience. Additionally, the 2-level architecture
requires low network latencies, which is crucial for the high degree of coordination
necessary among clusters to manage intensive communication effectively.

3-Level Architecture

In an extended three-tier architecture for multi-cluster orchestration, shown in Figure
2.2, the structure starts with worker nodes at the base level, responsible for performing
operational tasks and handling the direct workload. At the next level up, master nodes
manage these worker nodes and monitor intra-cluster operations, forming the control
plane for each cluster. At the top of this hierarchy is a superordinate "Control Plane"
that serves all clusters and acts as the management level for the control levels of the
individual clusters. This higher-level node simplifies orchestration by abstracting the
complexity of coordinating multiple control levels, enabling centralized management
and oversight of different cluster environments. This architecture facilitates strategic
resource allocation and task scheduling across clusters and improves system monitoring
and resilience by dynamically reallocating resources and managing disaster recovery.
This three-tiered approach significantly improves scalability and operational efficiency
by centralizing control, making it ideal for managing complex, distributed systems [35].

This architecture is also used by well-known tools such as Kubefed and Karmada.
Kubefed, known as Kubernetes Federation, connects multiple clusters to synchronize
resources under a single central management structure [34]. Karmada works similarly
by distributing and managing workloads across different clusters and using policies
to control resource allocation and workload placement without centralizing overall
operational control [26]. Both tools can be integrated into the higher levels of this
architecture model. Other tools, such as KubeAdmiral, use the same architecture and
also have a host cluster that is in control [31]

10

2 Background

Figure 2.2: Architecture Multi-Cluster: 3-Layer

4+ Level Architecture

In addition, there is the potential for further refinement by introducing a fourth or more
layers, as shown in Figure 2.3, which could enable geographic and logical separation
within the multicluster architecture. This layer could enable policies and configurations
tailored to specific geographic regions or logical divisions within an organization, as
predicted in Cloud Edge Continuum [2], increasing flexibility and security.

Figure 2.3: Architecture Multi-Cluster: 4(+)-Layer

11

2 Background

2.1.2 Versatility in Cluster Management

The concept and versatility of cluster management in a multi-cluster orchestration
environment are central to achieving high efficiency and adaptability. This section looks
at the strategic configurations and operational dynamics that enhance the versatility
of cluster management. By examining and citing various facets, from uniformity to
the diversity of cluster configurations, monitoring, control mechanisms, and dynamic
scaling, a comprehensive overview is provided of how different approaches can be
harmoniously integrated to fulfill the diverse requirements of complex systems. Under-
standing these aspects is crucial for developing robust and scalable systems precisely
tailored to the specific requirements of different operational scenarios.

Uniformity and Diversity in Cluster Configurations

With multi-cluster orchestration, clusters can either be configured uniformly or set
up differently, with each approach catering to different operational requirements
and preferences. Standardized configurations ensure consistency across all clusters
and simplify management, deployment, and maintenance. This standardization is
particularly beneficial for companies looking for a streamlined approach where each
cluster behaves predictably and integration between clusters is seamless. On the other
hand, the variety of cluster configurations allows customization to specific requirements
such as processing power needs, storage capacity, and geographical distribution. This
flexibility supports customized solutions that effectively handle different workloads
and operational requirements.

However, the diversity of cluster configurations also brings a number of challenges,
especially when clusters differ not only in their specifications but also in their under-
lying architectures (e.g., x86 or ARM) or their deployment environments (e.g., edge,
cloud, and fog computing). These differences can complicate resource management
and require the separation of clusters to optimize performance and efficiency. In ad-
dition, different environments can also pose networking challenges. The latency and
robustness of the connection to edge devices are usually significantly weaker than in
cloud data centers [16]. Furthermore, the variability of clusters - from clusters running
on Kubernetes to those using alternative orchestration platforms - can exacerbate these
challenges. This necessitates the adoption of a universal deployment language such as
TOSCA (Topology and Orchestration Specification for Cloud Applications) to ensure
interoperability and optimized management across diverse and complex environments.
This universal approach helps to reduce potential resource disparities and simplify the
orchestration of multicluster configurations [37]

12

2 Background

Multi-Cluster Monitoring and Control

Monitoring and controlling multiple clusters are critical components that are distinct
from orchestration. Effective monitoring ensures that performance metrics, system
health, and other critical data are consistently assessed, enabling proactive management
and timely intervention. Control mechanisms, in turn, allow policies to be enforced
and necessary adjustments to be made to maintain system stability and efficiency.
Together, these processes form the backbone of a robust management strategy that
ensures multicluster environments run smoothly and meet the rigorous demands of
modern computing tasks.

Scheduling Policies Across Clusters

Cross-cluster scheduling strategies are fundamental to optimizing the distribution
and utilization of resources in a multicluster environment. Potential factors include
geographic location, resource availability, and specific vendor constraints. Organizations
can ensure that the most appropriate clusters process workloads by adapting scheduling
policies to these parameters. This adaptive approach not only improves response
times and reduces latency but also helps to meet compliance requirements and utilize
resources cost-effectively [3, 67].

2.1.3 Practical Applications and Use Cases

Multi-cluster orchestration offers transformative solutions across various industries by
enabling more efficient management of resources and streamlined operations. This
section illustrates multi-cluster orchestration’s practical applications and significant
benefits through two detailed use cases. Each example demonstrates the critical role that
sophisticated orchestration plays in not only meeting the unique demands of different
sectors but also enhancing the capabilities of organizations to respond dynamically to
their operational challenges. From global e-commerce to healthcare data analysis, these
use cases provide insights into how multi-cluster orchestration can be strategically
implemented to achieve scalability, compliance, and performance optimization.

Global E-Commerce Platform

In the rapidly evolving global e-commerce world, organizations face the challenge
of providing customers with a seamless and responsive online shopping experience
across different continents. To manage this complexity, leading e-commerce companies
should utilize multi-cluster orchestration and separate clusters strategically placed in
key regions worldwide. This architecture is critical for optimizing local access speeds

13

2 Background

and complying with regional data protection laws, enhancing customer trust and
satisfaction.

The orchestration framework implements geo-specific scheduling policies that in-
telligently route user requests to the nearest data center. This minimizes latency and
dynamically adapts to the geographical distribution of user traffic throughout the day.
For example, during peak shopping times in Europe, the system automatically redirects
European traffic to local clusters, while data centers in less busy time zones can handle
night-time processing tasks.

Autoscaling plays a crucial role in coping with fluctuations in demand in the e-
commerce sector, especially during sales or promotional events. Each cluster has
autoscaling capabilities that automatically adjust computing resources based on real-
time traffic data. This ensures that the platform can handle sudden spikes in user
activity without performance degradation, ensuring a smooth and efficient shopping
experience for all users.

In addition, multi-cluster monitoring is essential to the e-commerce platform’s
operational strategy. It provides a centralized dashboard that offers real-time insights
into the health and performance of clusters across all regions. This allows the IT
team to quickly identify and resolve potential downtime or bottlenecks before they
impact customers. The monitoring system also helps with proactive maintenance and
fine-tuning of resources to ensure that each cluster operates at maximum efficiency and
continues to meet the evolving needs of a global customer base.

Healthcare Data Analysis

In the healthcare sector, data analysis and patient privacy are paramount. A healthcare
analytics service leverages multi-cluster orchestration to manage sensitive patient data
across multiple jurisdictions. This orchestration allows the service to meet various
compliance requirements tailored to specific regions, such as the California Consumer
Privacy Act (CCPA) [9] in the US and General Data Protection Regulation (GDPR) [18]
in Europe, ensuring that patient data is handled securely and in accordance with local
laws.

As part of multi-cluster orchestration for healthcare analytics, different clusters
can be strategically deployed in different countries to manage sensitive patient data
in accordance with local regulations. This approach ensures that data management
policies are specifically tailored to the strict requirements of each region.

For example, a cluster in the United States would be configured to comply with the
CCPA, which sets the standard for protecting sensitive patient data. This cluster would
implement specific security measures, such as data encryption at rest and in transit,
secure access controls, and detailed audit capabilities.

14

2 Background

In contrast, a cluster based in a European Union country would comply with the
GDPR. Data protection is ensured through strict consent protocols, the right to erasure,
and data minimization principles. The GDPR also stipulates that data may only be
transferred to countries outside the EU if adequate protection is guaranteed.

By utilizing multi-cluster orchestration, healthcare analytics services can dynami-
cally route data processing tasks to the appropriate cluster based on the geographic
location of the data source and the specific data regulations of that region. This helps
comply with local laws and optimizes the processing and analysis of healthcare data
by minimizing latency and maximizing resource usage efficiency.

In addition, the orchestration system can address data sovereignty issues by pre-
venting the cross-border transfer of data unless it is absolutely necessary and legally
permissible. The service can also implement region-specific data retention policies and
security protocols to further enhance the protection of patient data.

2.2 Multi-Cluster Communication

There are various approaches to establishing successful communication between clusters.
This also depends heavily on the circumstances in which the clusters find themselves. If
all clusters are located in cloud environments, other techniques may be used compared
to the edge environment.

2.2.1 Container Networking

The basic concept of container networking must be explained to illustrate the different
communication technologies. When a container is started, a separate Linux network
namespace is created for each container. This is separate from the host network and is
only connected via a network bridge, creating basic isolation and security. After the
container has created the network namespace, the engine calls the selected container
network interface (CNI) when initiating a container. The CNI receives a link to the
newly created namespace of the container and further information, and depending on
the type of CNI and the defined rules, certain network rules are created in the network
namespace. Well-known CNIs are Calico or Flannel. CNI is a firmly defined interface
that every container engine understands, and consequently, the CNIs can be exchanged.

Sidecar containers [8] are an alternative approach for communication between clus-
ters. These separate containers run alongside an application container to perform
isolated peripheral tasks such as logging, proxying, and configuration management.
Sidecar containers are created and terminated in synchronization with the application
containers they support and have the same lifecycle management as the parent con-
tainer. By offloading non-functional requirements such as network handling to sidecar

15

2 Background

containers, applications can focus on their core tasks without being burdened by these
additional requirements. By abstracting the complex network logic from the application
code, sidecar containers simplify the development and maintenance of microservices.

2.2.2 Inter-Cluster Networking Solutions

A common approach for service communication is service mesh [36]. Service Mesh
works by deploying Envoy proxies as sidecars next to each microservice in a Kubernetes
cluster. These proxies intercept all network traffic between microservices and allow
the Service Mesh to manage the communication without changing the application
code. It provides a control plane for configuring these proxies and manages traffic
routing, load balancing, service discovery, security, and observability. The control
plane dynamically configures the proxies to enforce policies, collect telemetry data, and
secure communications between services with mutual TLS. The best-known provider
is Istio [54], which also offers the option of multi-cluster mesh. For this, Istio must
be installed on each cluster, and the Istio Deamon must also be able to access the
Kubernetes API of other clusters to ensure a pod-to-pod connection between clusters.
However, Istio can only be used for Kubernetes clusters and not for alternative tools.

Another approach is manually configuring routing tables and entries to enable cluster
communication. With this method, routes must be explicitly defined. Manually setting
up routing tables involves specifying each cluster’s IP addresses and subnet masks,
defining gateway addresses, and creating static routes that specify how packets should
traverse the network. This approach allows fine-grained control over network paths and
can be tailored to specific infrastructure requirements. However, it is labor-intensive
and complex, leading to misconfigurations and potential network issues.

While this method offers flexibility and direct control over network routing, it lacks
the automation and dynamic adaptability offered by solutions such as sidecar containers
and service meshes. It is often used in simpler or smaller environments where the
expense of implementing automated solutions is not justified

There are also overlay mesh options that can be realized with various tools. One
of the best-known tools is Submariner [57]. Submariner is an open-source project
developed to connect Kubernetes clusters and enable seamless communication between
the clusters. It creates an overlay network that allows services in different clusters
to communicate as if they were on the same network. Submariner achieves this by
setting up encrypted tunnels between clusters using IPsec or WireGuard to ensure
secure data transmission. Submariner’s network path varies depending on the origin
and destination of the IP traffic. In all cases, traffic between two clusters is routed via
the configured cable driver between the gateway nodes selected by the leader in each
cluster. If the source pod is on a worker node that is not the elected gateway node,

16

2 Background

traffic destined for the remote cluster is routed through the submariner VXLAN tunnel
(vx-submariner) to the local cluster gateway node. On the gateway node, the traffic
is forwarded to the remote cluster via the configured tunnel. Once the traffic reaches
the destination gateway node, it is forwarded based on the destination CIDR: via the
CNI-programmed network if it is a pod network or via the facility configured via
kube-proxy if it is a service network. Submariner is still only available for Kubernetes
applications, but tunneling can be used, as with Oakestra’s networking component.
Oakestra implements a semantic overlay networking system, which supports robust
service interactions across private networks without heavy overheads [3].

2.3 Edge Cloud Continuum

The Edge Cloud Continuum (ECC) was initially referenced in 2017 [45]. Subsequent
to its introduction, it has been extensively cited across various scholarly articles, often
with divergent interpretations or under alternative nomenclatures. This chapter aims
to provide a comprehensive overview of the Edge Cloud Continuum, elucidating the
diverse facets pertinent to its understanding [30].

Before delving into the specifics of the Edge-to-Cloud Continuum (ECC), we will
briefly elucidate the concepts of Edge and Cloud Computing.

Edge Computing is a distributed computing paradigm that processes and stores data
at the network’s periphery, closer to the data sources such as IoT devices. This approach
enables faster response times and reduces bandwidth requirements by minimizing the
need to transmit large volumes of data to a central data center. [10].

Cloud Computing is a model that enables ubiquitous, convenient, on-demand access
to a shared pool of configurable computing resources that can rapidly be provisioned
at any time and from any location via the Internet or a network [44].

The Cloud-to-Edge Continuum represents a seamless spectrum of computing re-
sources and services that extends from centralized cloud data centers to decentralized
edge locations. This architecture enables the shifting of data processing and application
logic to where it is most effective—whether in the cloud for compute-intensive tasks
and global scalability [68] or at the network edge for real-time responsiveness and
low latency [38]. The continuum provides a flexible platform that allows for dynamic
distribution and scaling of services across different network layers to ensure optimal
performance, cost-efficiency, and user experience. By integrating cloud and edge
computing, organizations can leverage the massive computational power and storage
capacity of the cloud while also capitalizing on the physical proximity to data sources
and end-users to meet the demands of modern, data-driven applications [47].

17

2 Background

Edge, Fog, Cloud & Cloudlet

These are the basic components of a Cloud-To-Edge Continuum. As shown in table 2.1,
each component has its own characteristics and advantages [58].

Component Characteristics
Cloud node • High latency

• High computing power
• Global geographic coverage
• Long distance
• Single point of failure

Cloudnet node • Medium latency
• Mobility
• Medium geographic coverage
• Medium distance
• Medium computing power

Edge Cloud • Low latency
• Limited geographic coverage
• Short distance
• Single point of failure
• Medium computing power
• Specific placement within a network

Fog node • Low latency
• Limited geographic coverage
• Short distance
• Limited computing power
• Specific cyber-physical capabilities

Table 2.1: Basic Components Cloud To Edge Continuum [58]

The push for decentralization is driven by the massive amounts of data produced
by IoT devices and the need for immediate, context-aware processing that traditional
cloud setups can’t always efficiently support. Edge computing frameworks, such as
fog computing and cloudlets, are developed to provide reliable, low-latency services
to end-users. Specifically, cloudlets bridge the gap between mobile users and distant
cloud servers by offering a more dependable connection. In contrast, mobile edge
computing (MEC) adapts to the dynamic conditions of mobile networks, focusing on
connectivity and contextual awareness of the deployed services.

Yet, adopting these technologies in commercial settings introduces challenges like

18

2 Background

ensuring scalability and managing the security risks associated with IoT devices.
Enterprises require resilient systems that can seamlessly handle potential network
instabilities and data overflows, turning to configurations where edge computing
predominately handles the data traffic, supported by cloud services when necessary.

The study in [61] demonstrates the feasibility of conducting data analytics and
machine learning across hybrid Edge-to-Cloud infrastructures. However, further devel-
opment and optimization are required to realize its full potential.

2.3.1 Reference Architectures

This thesis aims to develop a reference architecture for next-generation frameworks.
While various approaches to cloud-edge reference architectures exist, the integration
and resulting architecture presented in the latter part of this thesis align closely with
these established frameworks.

Pillar Name Description
Security Ensuring the protection of data and resources from

unauthorized access and threats.
Scalability The ability to handle increasing workloads by adding

resources.
Open Utilizing open standards and technologies to enhance

compatibility and interoperability.
Autonomy Systems operating independently with minimal human

intervention.
RAS (Reliability,
Availability,
Serviceability)

Ensuring systems are reliable, available, and easily
maintainable.

Agility The capability to quickly adapt to changes and new
requirements.

Hierarchy Organizing system components in a structured manner for
better management and scalability.

Programmability Enabling systems to be easily programmed and customized
to meet specific needs.

Table 2.2: Key Pillars of OpenFog Reference Architecture

One notable example is the OpenFog Reference Architecture, originally designed
for fog computing but also applicable to edge cloud architectures. This architecture is
underpinned by eight key paradigms detailed in Table 2.2. These paradigms ensure

19

2 Background

a robust framework capable of supporting diverse and complex applications. By
leveraging these principles, the architecture can meet the demands of modern cloud-
edge environments.

The Platform for Universal and Lightweight Cloud-Edge Orchestration (PULCEO)
[6] offers a ready-to-use cloud-edge reference architecture. PULCEO decouples op-
timization from infrastructure, promoting generality, reusability, and comparability
of orchestration algorithms. Although this architecture was not implemented in the
current work, it presents a detailed conceptual framework. The platform offers a public
API for continuous interaction with the infrastructure, enabling efficient application
placement and scaling. PULCEO is based on the OpenFog reference architecture,
aiming to implement all eight paradigms and further extend it with its own innovative
concepts.

SODALITE@RT is an open-source framework designed to address the challenges of
dynamic orchestration of IoT applications on heterogeneous cloud-edge infrastructures.
It uses TOSCA [37] to describe application and infrastructure topology and behavior in
a standardized, portable manner. This enhances application portability and reusability
across different infrastructures. Infrastructure-as-Code (IaC) automates resource provi-
sioning and management, utilizing technologies like Ansible for consistent deployments.
The meta-orchestrator coordinates various resource orchestrators for deployment and
management. Its monitoring system collects metrics and triggers alarms to enable
adaptive application management at runtime. The high-level architecture is shown in
Figure 2.4 and describes the role of the Meta Orchestrator. [35]

Figure 2.4: High Level Architecture SODALITE@RT [35]

20

2 Background

2.3.2 Paradigms

Edge cloud orchestration and communication represent two critical dimensions within
the edge cloud continuum (ECC). These aspects are afforded significant emphasis in
this study and are therefore addressed in dedicated chapters, specifically 2.3.3 and 2.3.4.
Additional paradigms are enumerated in the subsequent section.

Heterogeneity

The Edge-Cloud Continuum (ECC) features highly heterogeneous hardware, spanning
from large data centers to small, network-connected sensors and microcontrollers. Any
device with basic computational and network capabilities can integrate into ECC. The
software on these devices varies widely, including everything from firmware without
an Operating System (OS) to full and container operating systems [30]. The ECC also
encounters heterogeneity in communication protocols, which can vary significantly
across devices and layers within the continuum [19].

Computational Hierarchy

To systematically categorize entities within the Edge-Cloud Continuum (ECC), it is
structured into a "computational hierarchy" with three main levels. The top level, the
cloud, features extensive resources and high latency, which makes it ideal for heavy
computational tasks in large data centers. The intermediate fog or edge level comprises
nodes like fog nodes or cloudlets, providing localized computing and storage. The
lowest device level directly interfaces with users and includes a range of devices from
smartphones to specialized sensors [30].

Virtualization

The use of containerized microservices is emphasized to enhance portability and
efficiency in deploying applications across diverse computing environments, from cloud
data centers to edge devices. Containers help manage and orchestrate lightweight,
independent pieces of software, which is essential for the dynamic nature of edge
computing.

2.3.3 Edge Cloud Communication

Edge communication enables direct, efficient interactions between devices located at the
edge of the network, significantly improving response times to the user and reducing
bandwidth utilization between edge devices. [43] This approach is characterized by

21

2 Background

direct device-to-device communication and includes technologies such as multi-access
edge computing (MEC) and fog computing. [43] With the introduction of 5G technology
and upcoming 6G technology, edge communication will be significantly strengthened
as it provides the required speed, capacity, and low latency and supports real-time
applications such as autonomous driving and smart city infrastructure. [69]

Cloud communication in data centers relies on a sophisticated network of intercon-
nected servers arranged into clusters. Virtualization technology is crucial here, enabling
flexible, scalable environments by dividing physical servers into multiple virtual ma-
chines. This setup is controlled through network protocols and APIs, facilitating secure
and efficient data transfers. Mobile Cloud Computing (MCC) facilitates the offloading
of computational tasks from mobile devices (MDs) to the more robust cloud center (CC),
where tasks are processed centrally. Yet, MCC presents inherent challenges, notably
the extended propagation distance from the CC to the user, which is disadvantageous
for latency-sensitive applications [24, 25]. Software-defined networking (SDN) and
Network Functions Virtualization (NFV) enhances network management, promoting
dynamic resource distribution and enhanced service provision.

Converging the edge and cloud communication paradigms creates a hybrid model
known as cloud-edge communication. This integrated approach is essential for cloud
edge clusters where services require communication between edge devices and cloud
centers. In this context, mobile edge computing (MEC) has developed. MEC is about
shifting the storage and processing of certain data-intensive applications from the
centralized cloud to the network’s edge in the immediate vicinity of the user.[42].

In Mobile Edge Computing (MEC), offloading compute-intensive tasks to MEC
servers for execution in the cloud can lead to significant energy savings for mobile
devices and effectively alleviate core network congestion [24, 25]. However, the limited
battery life of mobile devices and the increasing need for low-latency applications pose
additional challenges in energy consumption and latency when offloading tasks. The
proximity of application delivery to users significantly impacts performance and user
experience [13], moving applications close to users can significantly improve results.

In addition, using cloudlets offers clear advantages for users’ quality of experience
(QoE) of users [17, 22]. These studies compare the performance of different applications
at different levels of a three-tier hierarchy and show the practical benefits of cloudlets
in improving service delivery. The European Telecommunications Standards Institute
(ETSI), which originally coined the term Mobile Edge Computing, has renamed it Multi-
Access Edge Computing (MEC) to reflect the wider interest of mobile and non-mobile
operators in providing services at the network’s edge. MEC not only offers low latency
but also extends compute and storage capacity directly to end users and Internet
of Things (IoT) devices at the edge of the Radio Access Network (RAN), providing
key cloud computing services close to the point of data generation and consumption

22

2 Background

[59]. By considering communication and computing resources, optimal solutions were
designed to reduce energy cost and latency [12]. These data may be transmitted for
storage and processing on conventional (centralized) clouds, even though the majority
of data can be pre-processed at the network edge [11]

Network Resilience

Network resilience is critical to cloud-to-edge communication, ensuring reliable connec-
tivity and service continuity in diverse and often challenging operational environments.
Several factors influence the resilience of such networks:

Heterogeneity Cloud-edge networks are inherently heterogeneous, comprising many
devices, from high-capacity cloud servers to resource-constrained
edge devices. This diversity necessitates robust protocols and adap-
tive strategies to manage communication effectively across various
hardware and software platforms [4]. The heterogeneity of devices
in edge networks can lead to challenges in balancing and schedul-
ing, necessitating advanced solutions that adaptively distribute traffic
across servers to mitigate disparities and enhance overall system
performance [72].

Bandwith In edge environments, communication bandwidth is often limited,
leading to performance impairments. [41]

Scalability As demand fluctuates and the number of edge devices grows, the
network must dynamically scale to accommodate changes without
compromising performance or security. [41]

Security Given the distributed nature of cloud edge architectures, securing
data in transit and at rest, protecting against breaches, and ensuring
data privacy is paramount. Implementing robust encryption, au-
thentication protocols, and continuous monitoring can help protect
sensitive data across distributed nodes. [62]

Interoperability Ensuring interoperability through standardized protocols and inter-
faces is crucial in cloud-edge systems, given the many devices and
platforms involved. This facilitates seamless communication and
integration across the diverse components of the network [63].

Mobility Ensuring service mobility poses a major challenge to network re-
silience, as maintaining optimal end-to-end session connectivity through-

23

2 Background

out service usage is difficult, especially for mobile users who fre-
quently change anchor points, e.g., from one edge node to another.
Distributed mobility management (DMM) provides a solution by man-
aging user mobility and facilitating the migration of MEC services to
edge nodes near mobile users. [66]

2.3.4 Edge Cloud Orchestration

Edge Cloud Orchestration provides a solution for optimizing computing tasks by
dynamically distributing workloads across the edge and cloud resources, thereby im-
proving execution performance. An orchestrator is a software component determining
applications’ optimal placement and scheduling.

A cloud edge orchestrator can schedule tasks on locally available edge resources or
forward them to a cloud system based on resource properties and security permissions.
This process can include aggregation of tasks prior to routing to the cloud or disag-
gregation of tasks prior to distribution to edge resources. An orchestrator at the edge
is recommended to support the assignment of tasks to edge and/or cloud resources.
resources. In addition, a further fault tolerance can be built if edge applications are
replicated more frequently by the edge orchestrator. [53]. It is emphasized that such
an orchestrator demands a more detailed understanding of application behavior and
support for federation, given the high likelihood that edge environments will span
multiple providers. [65]. The study presented in [46] examines how applications and
their specific service characteristics impact resource allocation in cloud environments.

In the study [66], three primary limitations and tasks for the Edge Orchestrator are
identified. Firstly, resource allocation requires ensuring that sufficient resources are
available during scheduling. Secondly, service placement involves determining the
optimal locations and quantities for deploying applications. Thirdly, edge selection
identifies which edge devices will most likely accommodate the load. Additionally,
reliability is a critical concern due to the numerous potential sources of error arising
from network stability issues.

2.4 Existing Orchestration Tools, Frameworks, and libraries

The following section examines a range of tools currently used for multi-cluster or-
chestration and cloud-to-edge orchestration. It will focus on dissecting these tools’
architecture and core functionalities, highlighting some of the most recognized or
promising options available today. This review will provide insights into each selected
tool’s technical foundations and operational capabilities.

24

2 Background

2.4.1 Multi-Cluster Orchestration

This section discusses current multi-cluster orchestration tools and explains their
architectures.

KubeFed

KubeFed [34], short for Kubernetes Federation, is designed to manage multiple Ku-
bernetes clusters. The project aims to synchronize resources across these clusters,
enabling managing applications to be deployed across different environments from a
single control point. It extends the capabilities of individual Kubernetes clusters by
providing mechanisms for coordinated configuration, deployment, and management of
applications on a global scale across clusters.

The architecture of KubeFed includes several key components: the Federation API
server, which acts as the interface for operations and configuration management; the
Federation controller manager, which orchestrates sync across clusters; and a cluster
registry that lists the clusters part of the federation. This will not be discussed in detail
because the project has already been archived and is no longer being developed.

Despite its potential, the decision to consider archiving KubeFed was driven by
several critical factors. First, the project was deemed too broad and not aligned with
the more focused projects preferred by the Kubernetes Special Interest Group (SIG).
This broad scope made it difficult for KubeFed to attract sustained contributions
and maintain a clear development roadmap. There was a significant drop in active
contributions, with the project struggling to advance beyond its alpha phase despite
plans for a beta release. [33].

Karmada

Karmada [26], short for Kubernetes Armada, is an advanced management system that
orchestrates cloud-native applications across various clusters and cloud environments
without requiring modifications to the applications. Developed under the auspices of
the Cloud Native Computing Foundation (CNCF), Karmada enhances the deployment
and management of applications through features like high availability, centralized
multi-cloud management, failure recovery, and efficient traffic scheduling. It is designed
to interact seamlessly with Kubernetes-native APIs, supporting advanced scheduling
capabilities. Furthermore, it offers a variety of options, such as a multi-cluster ingress to
route external traffic to the clusters or inter-cluster communication, wherein Kubernetes
services can be exported and imported between clusters.

Karmada integrates components familiar to Kubernetes users, such as an API server,
a scheduler, and etcd, as shown in Figure 2.5. It provides flexible connection options to

25

2 Background

the host cluster via a push principle, where no additional components are needed in
new clusters, or a pull principle, where a Karmada agent pulls updates from the host
cluster. Moreover, Karmada offers versatile interaction with its API server through tools
like kubectl, karmadactl, or a REST API and supports multi-cluster service discovery,
enabling clusters to communicate independently of their source cluster. Karmada
employs numerous Custom Resource Definitions (CRDs) to create specialized objects
that facilitate the scheduling of child clusters. Furthermore, it supports cross-cluster
failover of applications to maintain continuous service availability even when some
clusters experience failures. This makes Karmada a powerful tool for managing complex
Kubernetes environments across various deployment scenarios. To use Karmada, a hub
cluster is required where all root components are deployed.

Figure 2.5: High Level Architecture Karamada [26]

KubeAdmiral

KubeAdmiral, [31], a next-generation multi-cluster orchestration engine developed
by ByteDance, is designed to enhance the management of large-scale Kubernetes
deployments. KubeAdmiral improves resource management and deployment rates
across multiple Kubernetes clusters. This project is still in its developmental phase
without official releases, indicating ongoing refinement and testing. The architecture is
described in Figure 2.6. KubeAdmiral requires a hub cluster, where all the logic takes
place, and the child clusters only receive propagated deployments.

Initially developed in response to the limitations of KubeFed v2, which ByteDance

26

2 Background

used to federate resources across different business lines, KubeFed struggled with
dynamic resource management and adapting to fluctuations in cluster resources. This
was particularly evident with stateful services and batch jobs. In response, ByteDance
created KubeAdmiral, building upon the foundational concepts of KubeFed but in-
troducing more advanced scheduling capabilities and supporting a broader range of
resource types.

Distinguished by its sophisticated scheduling framework, KubeAdmiral facilitates
nuanced cluster selection and workload placement strategies. It supports automatic
dependency scheduling and dynamic rescheduling based on real-time conditions.
ByteDance plans to further enhance KubeAdmiral’s capabilities, especially for stateful
and batch computing workloads, to meet the evolving demands of modern cloud-native
environments [39].

Figure 2.6: High Level Architecture KubeAdmiral [31]

Open Cluster Management

Open Cluster Management (OCM) [51] is an innovative platform for managing multiple
Kubernetes clusters across different environments, ensuring efficient orchestration
and management. It evolves from earlier Kubernetes federation systems, embracing a
more modular and extensible "hub-agent" architecture that separates computation and

27

2 Background

execution processes.
The system enables cluster registration, work distribution, and robust policy manage-

ment, allowing clusters to be vendor-neutral. Furthermore, OCM emphasizes security
and modularity in its operations, allowing for extensive customization and integra-
tion according to user or organizational requirements. It supports a broad range of
operations, from simple workload deployment to sophisticated multi-cluster schedul-
ing, underpinned by a community-driven approach to continuous enhancement and
support.

The OCM system utilizes a "hub-spoke" architecture, as shown in figure 2.7, designed
to efficiently manage multiple Kubernetes clusters. This architecture is divided into
two main elements: the Hub Cluster, which hosts the control plane and issues man-
agement commands, and the Klusterlet, installed on each managed cluster to execute
these commands. This design allows the Hub to manage numerous clusters without
direct interaction. This separation of computation and execution enhances scalability,
improves fault tolerance, and allows managed clusters to function autonomously, even
if the hub is offline, thus ensuring continuous operations across diverse environments.

Figure 2.7: High Level Architecture OCM [51]

28

2 Background

2.4.2 Cloud-To-Edge Orchestration

This section discusses current edge orchestration tools and explains their architectures.

k3s

K3s is a lightweight Kubernetes distribution designed to run in resource-constrained
environments. Developed by Rancher Labs, now part of SUSE, K3s simplifies the
Kubernetes installation and maintenance by offering a single binary of less than 100
MB that integrates most necessary components. This binary includes the Kubernetes
core components like the API server, scheduler, and controller-manager and essential
tools such as Containers, Flannel, and CoreDNS, streamlining the setup and reducing
the system’s footprint.

K3s distinguishes itself from standard Kubernetes in several ways. It is specifically
tailored to simplify the setup and operation of Kubernetes, removing seldom-used
features to reduce its size and complexity. Features omitted include legacy, alpha, and
non-default Kubernetes features, in-tree storage drivers, and specific cloud provider
integrations, typically not required in edge and IoT deployments. However, these
components can be added if needed.

The architecture of K3s, shown in figure 2.8 differentiates between server and agent
nodes. Server nodes, which host the k3s server service, are responsible for the cluster’s
control plane and datastore components. In contrast, agent nodes running the k3s
agent service focus solely on running workloads in the edge environment. Both types
of nodes utilize essential services like kubelet and container runtime. The architecture
also integrates Flannel for network communication and Traefik as an ingress controller,
simplifying external service exposure and automating HTTPS configurations through
Let’s Encrypt.

29

2 Background

Figure 2.8: High Level Architecture K3s [55]

However, K3s maintains some of the conventional Kubernetes networking challenges.
It requires a VPN to manage traffic across diverse networks, reflecting a compromise on
network simplicity to maintain broad connectivity. Although K3s are designed for high
availability with minimal resource impact, they follow a single-cluster model, which
may lack the necessary flexibility for dynamic traffic management, which is crucial
in edge computing scenarios. This setup highlights the balance K3s strikes between
operational simplicity and the inherent complexities of robust network management in
distributed environments [3]

KubeEdge

KubeEdge is a versatile platform designed to extend Kubernetes capabilities to edge
devices. It enables better integration and management of IoT devices and edge servers,
facilitating seamless cloud-edge computing. The core of KubeEdge is to handle large
volumes of devices over a distributed network with reduced latency and enhanced data
processing speed close to the data source.

The architecture of KubeEdge, shown in figure 2.9, includes a cloud core and edge
nodes. The cloud component, running the control plane, manages the edge nodes
that operate the data plane. This structure supports decentralized operation, where
edge nodes process data locally, alleviating bandwidth constraints. The architecture
integrates with existing Kubernetes ecosystems, allowing for familiar operational
models and scalability.

Despite its benefits, KubeEdge has limitations, particularly in scenarios requiring

30

2 Background

Figure 2.9: High Level Architecture KubeEdge [56]

extensive cloud-based data processing or when high interconnectivity with various
cloud services is essential. Additionally, its dependency on a stable network connection
for initial setup and some management tasks can pose challenges in environments with
intermittent connectivity.

Oakestra

Oakestra is an innovative orchestration framework tailored for edge computing environ-
ments [3]. The framework is designed to manage the unique challenges associated with
edge computing, such as lower resource capacities and the need for geographical distri-
bution. Oakestra introduces a hierarchical orchestration system that effectively manages
resources across distributed edge infrastructures. This setup allows for dynamic re-
sponse to variations in resource availability and application demands, optimizing CPU
and memory usage significantly better than traditional data center-oriented systems.

There are several key features within Oakestra, including federated cluster man-
agement and delegated task scheduling. These features enable efficient consolidation
and management of multiple infrastructure operators, ensuring smooth operation over

31

2 Background

Figure 2.10: High-Level Architecture Oakestra

geographically dispersed resources. Oakestra also implements a semantic overlay
networking system, which supports robust service interactions across private networks
without heavy overheads. This approach reduces the complexity typically associated
with edge computing and enhances the scalability and responsiveness of services
deployed in edge environments. Figure 2.10 depicts the architecture of Oakestra. It
provides multi-cluster orchestration functionality in an edge environment. The Root
component does not need to be a cluster, as can be seen in Karamda or OCM; it is a
single component that can be started independently. If it fails, the child clusters can
operate autonomously.

The orchestration tool Oakestra, originally designed for edge environments, will be
the foundation of my development. By integrating it with Kubernetes, we can establish
a seamless cloud-to-edge continuum.

32

3 Oakestra/Kubernetes Integration

This chapter proposes a design for integrating cloud and edge orchestration systems.
The goal is to implement multi-cluster cloud edge applications in heterogeneous
infrastructures. This integration aims to leverage the capabilities of Oakestra, a multi-
cluster orchestration tool primarily designed for edge environments and developed by
TUM, and the current industry standard for cloud orchestration, Kubernetes.

The objective of the integration is to enable cloud-to-edge orchestration and multi-
cluster orchestration. With multi-cluster orchestration, many clusters can be synchro-
nized and managed from a single point, which can be beneficial when managing
multiple clusters to deliver applications and services worldwide. Edge capabilities are
beneficial when the applications’ devices have limited resources and network access
under conditions that differ significantly from those in data centers or cloud environ-
ments. Therefore, both must be used, on the one hand, the cloud capacities and the
advantages of the edge. These two new requirements, cloud-to-edge and multi-cluster,
define the next generation of orchestration tools, whose approach is presented in the
next chapter.

3.1 Requirements

General Requirements

This section outlines the foundational requirements for a Multi-Cluster Cloud-Edge
Orchestrator (MCCEO). These requirements are critical for the development of a stable
and effective orchestrator. Derived from a systematic evaluation of both challenges and
capabilities inherent to cloud-edge environments, this criteria aims to ensure optimal
functionality and robustness of the orchestrator across diverse operational contexts. The
architectural framework discussed later in this document directly results from these
requirements, demonstrating how they inform and shape the overall system design.

R1 Modularity The architecture should be designed to support modular compo-
nents that enable updates and changes without system interruption
and facilitate the independent development and testing of individ-
ual components. This applies, for example, to the network stack,

33

3 Oakestra/Kubernetes Integration

which should be designed as an interchangeable plug-in and other
system components. Ideally, the modules should follow a standard-
ized interface protocol to optimize integration and interoperability.
Finally, modularity should consider cross-platform compatibility to
ensure that the components can be used in different cloud and edge
infrastructures with minimal customization or at least be used as a
template.

R2 Isolation Services and applications should be designed to operate in isolated
environments to ensure security and operational integrity. This in-
cludes supporting multiple independent instances of individually
addressable and segregated services.

R3 Flexibility Given the heterogeneous nature of edge environments, routing and
resource allocation decisions should be flexible, enabling intelligent
selection of instances that meet specific performance and Quality of
Service (QoS) criteria.

R4 Resilience The architecture should support fault tolerance through strategies
such as replication and component independence. Essential com-
ponents such as the root and cluster orchestrator should be highly
available to ensure that communication between the various ser-
vices is not interrupted. If a cluster or the root fails, this should
not impact the overall functionality of the distributed services. The
clusters should also know which deployments need to be started.
This resilience is further strengthened by geographically distributed
deployment strategies that can compensate for regional failures and
real-time monitoring systems that continuously analyze the system
status and react proactively if necessary.

R5 Scalability The architecture of the Multi-Cluster Orchestrator should be designed
in such a way that it enables seamless scalability. Adding many
clusters to the system should be possible without affecting the overall
system’s performance. Scaling should be possible both at the cluster
and worker levels. This also includes the ability to automatically add
new clusters or reduce the size of existing ones.

R6 Automatic
Rescheduling

Should a cluster become non-operational over an extended period,
rendering the services and applications hosted on it inaccessible, these
should be relocated to other clusters that are operational and meet

34

3 Oakestra/Kubernetes Integration

the deployment criteria. This migration process should be automated,
ensuring minimal disruption and maintaining continuity of service.

R7
Interoperability

The architecture should be designed to ensure seamless interoperabil-
ity across multiple cloud providers and support different orchestra-
tion tools on the market, such as Kubernetes. This capability is crucial
for integrating different platforms without compatibility issues. It
should provide a unified management interface and standardized
communication protocols for efficiently handling operations in differ-
ent cloud environments. The system should also support common
standards and APIs to enable smooth data exchange and integration
of functions between different providers.

R8 Usability Another requirement is that the orchestration tool is both intuitive
and easy to use. It should have a command line interface (CLI)
that includes authentication via a configuration file and enables all
operations through the CLI tool. This requirement also extends to the
provision of comprehensive and detailed documentation.

R9 Infrastructure
Independence

The system should be capable of functioning across a diverse array
of devices and networks, accommodating various hardware, soft-
ware, and networking conditions without dependence on uniform
infrastructure settings.

Kubernetes-Oakestra Integration Requirements

In addition to the system design-specific requirements, there are also specialized
requirements for integrating existing orchestration tools into the structure of a multi-
cluster environment. This integration specifically pertains to using Oakestra and is
limited to Kubernetes clusters. These requirements ensure that orchestration tools
like Oakestra can effectively communicate and operate within a network of multiple
Kubernetes clusters.

R1 Extensibility The functional scope of Oakestra is presently confined to delivering
services via containers or unikernels. Over time, this scope is antici-
pated to broaden. Consequently, the integration of Kubernetes should
be architected to facilitate an expansion of this functional scope. The
design should enable the seamless support of additional workload
types as the platform progresses.

35

3 Oakestra/Kubernetes Integration

R2 Logical
Isolation

The components designed to integrate Kubernetes with Oakestra
should maintain independence from the Oakestra framework. Oakestra
must be capable of functioning autonomously, treating a Kubernetes
cluster merely as an additional cluster within its infrastructure. No
supplementary components should be required to initiate on the
Oakestra platform for Kubernetes functionality. This separation al-
lows Oakestra deployment in non-Kubernetes environments, enhanc-
ing flexibility and reducing dependencies.

3.2 System Design

The system design for Kubernetes and Oakestra combines a sophisticated architecture
with several components, which are discussed and explained in this section. Before
we go into the actual components and architecture in more detail, we will first present
various approaches for integration.

3.2.1 Integration Approaches

Apart from the fixed paradigm for communication and orchestration of the fixed
orchestration tools, Oakestra and Kubernetes, and the requirements already described,
integration design has no restrictions. Various integration approaches were therefore
developed. The most important of these are presented with the implemented integration
in this section.

(a) Option A: Kubernetes as Root Component (b) Option B: Oakestra as Root Component

Figure 3.1: Hierarchical Design Decision

The first step was to decide the hierarchical order in which Kubernetes and Oakestra
relate to each other. Kubernetes is a more widely used, well-developed, and compre-
hensive tool. This supports the idea of integrating Oakestra into Kubernetes as an

36

3 Oakestra/Kubernetes Integration

additional component, with Kubernetes remaining the primary interface and its API
server being extended with Oakestra functionalities, as can also be seen in Option A in
Figure 3.1.

An approach for an integration in which Kubernetes remains at the top of the
hierarchy is using virtual Kubelets, Option A1 in Figure 3.2a. With virtual Kubelets,
any device can be registered as a Kubernetes node, making it visible to the control
plane as a Kubernetes node and used accordingly. When implemented with Oakestra,
each Oakestra cluster would be integrated into Kubernetes as a Kubernetes node.
Provisioning requests are directed to the Kubernetes API server, and a dedicated
Oaekstra Scheduler assigns the deployments to the Oakestra Clusters. This requires the
use of an additional Oakestra scheduler. The Kubernetes Control Plane communicates
with the Oakestra scheduler. This integration means the complete Oakestra root logic
must be integrated into the Kubernetes API.

However, this approach would significantly change the Oakestra logic and require
a major change in its development roadmap. For this reason, a second fundamental
approach was considered: integrating Kubernetes as an additional cluster in Oakestra.
See Option B in figure 3.1. If Oakestra Root is at the top hierarchy level, two different
approaches have emerged.

The first approach entails modifying the Oakestra root components to enable direct
communication with the Kubernetes API, Option B1 in Figure 3.2b. Kubernetes clusters
could be registered alongside Oakestra clusters, but they require a separate logic
fully embedded in the root. Therefore, no special provisions need to be made in the
Kubernetes cluster itself; the root only needs the appropriate credentials and IP address
to communicate with the Kubernetes API.

Ultimately, the chosen method was to leave the Oakestra root unchanged. Changes
and the complete integration logic would only be required within the Kubernetes
cluster. See Option B2 in Figure 3.2c. The advantage of this approach is that no
additional logs need to be added to the root component. The main difference to the
previous option is that all the integration logic is in Kubernetes, not in Oakestra.

37

3 Oakestra/Kubernetes Integration

(a) Option A.1: Oakestra as Scheduler (b) Option B.1: Integration Logic in Oakestra

(c) Option B.2: Integration Logic in Kuber-
netes

Figure 3.2: Integration Approaches Kubernetes-Oakestra

3.2.2 System Components

An abstract architecture is presented first in figure 3.3, which serves as a blueprint for
an Oakestra-Kubernetes integration. Later in the chapter, the specific implementation
details are explained. This approach facilitates a structured understanding of the
system’s theoretical framework and practical application. All components necessary
for the integration are deployed across two namespaces: oakestra-system and oakestra-
controller-manager.

Oakestra Agent

A key extension of this integration is the development of the Oakestra Agent, which
works in a similar way to the Oakestra Cluster Orchestrator. These components are
essential for every Kubernetes cluster integrated into Oakestra, enabling communication
and coordination with the root component.

One difference between the Oakestra Agent in Kubernetes and the Oakestra Cluster
Orchestrator is their communication mechanisms with the worker nodes. In Oakestra,
the Oakestra Cluster Orchestrator connects directly to the registered worker nodes
via MQTT to assign deployment tasks and establish direct communication channels

38

3 Oakestra/Kubernetes Integration

Figure 3.3: High-Level Architecture: Oakestra - Kubernetes Integration

with the worker nodes. The Oakestra agent, on the other hand, has a Kubernetes
client that talks to the Kubernetes API and can start Oakestra deployments. The agent
does not perform any scheduling but simply forwards the Oakestra requests to the
Kubernetes API and starts the corresponding deployments. Detailed descriptions of
this orchestration process can be found in chapter 3.3.2.

The root component of Oakestra requires current and recurring information about
the utilization of the resources of the child clusters. For this reason, the agent has
a background job that regularly transmits updates on current resource utilization to
the root components by default at two-second intervals. An additional Kubernetes
client is connected to the Kubernetes Metrics API server via an interface and queries the
current utilization. The Kubernetes cluster must have an activated Metrics server so
that the agent can monitor resource utilization and forward updates to the Oakestra

39

3 Oakestra/Kubernetes Integration

root orchestrator.
Another component within the agent is provided for registering a Kubernetes cluster

in Oakestra. This process involves a handshake between the agent and the root
component, resulting in the receipt of a cluster ID signaling successful registration. It is
important to note that registered Kubernetes clusters are indistinguishable within the
root component, with the exception of a ‘cluster type’ field that indicates whether it is
a Kubernetes or Oakestra cluster. However, this distinction is not currently used in the
root system but will be considered in future development.

The third important sub-component of the agent is the deployment server, which
manages all the important endpoints for the root so that it can accept deployment
requests. Each agent hosts a server that primarily provides two endpoints: one for
deploying and one for deleting an Oakestra job

A Kubernetes Deployment Resource is required to initiate the Oakestra agent in a Ku-
bernetes environment. Specifying environment variables is critical to ensure proper
connectivity with the root component. Further explanations of the necessary environ-
ment variables can be found in chapter 3.5.2, which explains the use of the Oakestra
plugin. The Oakestra agent was developed exclusively in the Go programming lan-
guage. The container image for the agent can be accessed via the specified repository
location, which is explained in more detail in the following sections.

Oakestra Cluster Network Manager

The Oakestra Cluster Network Manager is an additional component required in every
Kubernetes cluster. This component serves as the equivalent of the Cluster Service
Manager. No changes were required for this component to work in a Kubernetes
setup. Only the corresponding environment variables need to be specified to initiate it
correctly.

Two additional deployments are required to successfully start the network compo-
nent: an MQTT server and a MongoDB server. Both components require a variety of
Kubernetes components for full functionality. Detailed information on these require-
ments can be found in the Setup section in chapter 3.5.2.

Oakestra Controller Manager

A central component within the Oakestra plugin is the Oakestra Controller Manager,
responsible for orchestrating and using Oakestra jobs. The Controller Manager can
manage multiple Custom Resource Definitions (CRDs) and their controllers. The
manager monitors the API server to recognize when a new resource has been initiated
and ensures seamless integration and functionality within the orchestration process.

40

3 Oakestra/Kubernetes Integration

The mechanisms of how it works are explained in the chapter on orchestration 3.3.

Kubernetes and Oakestra Components

As already mentioned in connection with the Oakestra agent, it is essential that the
Metrics Server is active so that the agent can work at full capacity. In addition to
the Metrics Server, all standard Kubernetes components, such as the API Server and
Kubelets running on all nodes, must also be operational under normal conditions. No
changes are required for these components to function properly within the integrated
system.

In addition, the diagram includes several Oakestra components critical to successful
integration, including all root components. More information can be found on the
Github repository [49].

Oakestra CNI

The Oakestra CNI is responsible for networking between Kubernetes and Oakestra
deployments. The CNI is attached to the container at container startup and provides
the appropriate routing rules and network interfaces. A more detailed explanation
follows in the communication section.

Oakestra Node NetManager

For inter-cluster communication between Kubernetes and Oakestra clusters, each node
has its own network component, the Node NetManager. Further details on the network
can be found in Chapter 3.4.

A detailed description of the deployments in Kubernetes and all resources that are
started in Kubernetes can be found in Appendix 2.

3.3 Orchestration

This section explains which components were used for the orchestration and how the
logic works to start Oakestra resources in Kubernetes.

3.3.1 Oakestra Controller Manager

A Controller Manager is employed to orchestrate applications managed and launched
by Oakestra. This Controller manages several Kubernetes Operator Patterns. Those
extend the Kubernetes API to create, configure, and manage instances of complex

41

3 Oakestra/Kubernetes Integration

stateful applications on behalf of Kubernetes users. This pattern encapsulates domain-
specific knowledge about the operational behaviors of these Oakestra applications,
automating deployment and management that would require manual intervention.

The current logic and scope of deployable Oakestra resources are ultimately confined
to Oakestra Jobs. Multiple jobs constitute a microservice, which can be launched as
applications. Oakestra Jobs may have several instances, each representing the smallest
logical unit, depicted either through a container or a Unikernel process. Unikernel
is not further pursued in this thesis due to the lack of robust and usable Unikernel
support for Kubernetes, although this will likely change. Consequently, instances are
the smallest logical unit in Kubernetes, comparable to a Kubernetes Pod. Although
a Kubernetes Pod may contain multiple containers, only one container is initiated in
most scenarios.

In Oakestra clusters, a dedicated database contains entries specifying which jobs
with many instances are deployed or scheduled in the specific cluster. A similar
approach involving a proprietary database could have been implemented in Kubernetes.
However, the implementation was executed using Kubernetes’ extension capabilities.
Additionally, Kubernetes already offers a solution for keeping track of deployed and
managed resources through etcd, where the current status of each Kubernetes resource
is stored. This suggests that this storage should also be utilized for Oakestra resources.
To store custom Kubernetes resources and their statuses in etcd, Custom Resource
Definitions (CRD) are used, meaning that a CRD is created for every Oakestra resource.
This ensures sustainable development, as additional deployable resources from Oakestra
can be accommodated by creating more CRDs.

Thus, the CRD OakestraJob is created to the Oakestra Job. The definition of an
object of this resource can be seen in Figure 3.4. All attributes typically stored in the
database of Oakestra clusters are reflected in the YAML configuration. Consequently, an
OakestraJob is created for every deployment initiated by Oakestra. In the InstanceList
field, the corresponding instances are stored.

Shown below in 3.4 is the YAML File to create an object of this CRD.

Figure 3.4: Example Yaml OakestraJob Custom Resource Object

1 apiVersion: oakestra.oakestra.kubernetes/v1
2 kind: OakestraJob
3 metadata:
4 name: example-oakestrajob
5 namespace: oakestra
6 spec:
7 application_ID: "app"
8 application_name: "Example Application"

42

3 Oakestra/Kubernetes Integration

9 application_namespace: "example-namespace"
10 bandwidth_in: 100
11 bandwidth_out: 100
12 cmd:
13 - "/bin/bash"
14 - "-c"
15 - "echo Hello, World!"
16 disk: 10
17 environment:
18 - "ENV_VAR1=value1"
19 image: "example/image:latest"
20 instance_list:
21 - cluster_ID: "cluster-1"
22 cluster_location: "us-west"
23 cpu: 2
24 disk: 10
25 host_IP: "192.168.1.1"
26 host_port: "8080"
27 instance_number: 1
28 last_modified_timestamp: "2023-01-01T00:00:00Z"
29 memory: 2048
30 status: "Running"
31 status_detail: "Instance is running"
32 worker_ID: "worker-1"
33 job_name: "example-job"
34 memory: 2048
35 microservice_ID: "service"
36 microservice_name: "Example Service"
37 microservice_namespace: "example-service-namespace"
38 next_instance_progressive_number: 2
39 port: "8080"
40 state: "Running"
41 status: "Active"
42 status_detail: "Job is active"
43 storage: 20
44 vcpus: 2
45 vgpus: 0
46 virtualization: "docker"
47 vtpus: 0

43

3 Oakestra/Kubernetes Integration

However, the CRD created does not initiate any pods that provide the containers and
thus make the service accessible. A controller is required for this. The controller
constantly checks the status of the OakestraJob resource and reads it when a resource
has been created, which it recognizes by the instance list in the CRD having changed.
The data in the instance list is then used to create a Kubernetes Deployment for each
instance, creating a Kubernetes Pod with the corresponding container. A Kubernetes
Deployment was chosen because it allows changes to the Pod definition after the Pod
has been created, the so-called PodTemplate. If changes to the pod are required later, the
PodTemplate can be changed, and the Pod will automatically restart.
A dedicated controller manages the CRD OakestraJobs. When new Oakestra resources
need to be deployed via Kubernetes, a new CRD can be created along with a corre-
sponding controller. This controller transforms the CRD into Kubernetes resources and
initiates their deployment. Figure 3.5 illustrates the orchestration process, detailing how
deployment proceeds once a Kubernetes cluster is selected within the Oakestra root.
All deployments started with Oakestra are initially placed in the oakestra namespace
in Kubernetes by default.

3.3.2 Orchestration Flow

To fully comprehend the orchestration flow, refer to Figure 3.5, which may also aid in
implementing additional Oakestra resources. Initially, the Oakestra Service Descriptor is
used to create and deploy the service. If the Oakestra Root Scheduler selects a Kubernetes
cluster, an HTTP request containing all necessary information about the OakestraJob is
sent to the servers of the Oakestra Agent for deployment. Subsequently, one Object
of the previously defined CRD is created. Once the Custom Resource (CR) is deployed,
the controller detects this change and creates the necessary Kubernetes deployments.
Additionally, direct communication with the Kubernetes API Server remains feasible,
allowing for fully utilizing the comprehensive functionalities offered by Kubernetes
resources. This accessibility ensures that all system capabilities can be fully exploited,
enhancing overall operational efficiency. The diagram also illustrates that multiple CRD
and controller pairs can be added to the Controller Manager.

44

3 Oakestra/Kubernetes Integration

Figure 3.5: Oakestra-Kuberetes Integration: Orchestration Flow

3.3.3 State Handling

Status monitoring plays a critical role in orchestration processes. It informs the control
plane whether a redeployment should be initiated or if all functions are operating
correctly. Both Oakestra and Kubernetes employ their distinct state-handling mech-
anisms. Resource usage updates sent from clusters to the root include a summary
of the status of the instances. Before this, worker nodes send an update indicating
whether the scheduled instances are operational. Based on this information, a decision
is made whether to redeploy or not. Kubernetes has its own state-handling system,
with controllers ensuring that the status of resources always matches the specified
conditions. Updates from the cluster to the root are still transmitted, but with the new
status: “Status Handled by Kubernetes”. The API Server must be consulted to gain
more precise insights into current issues. Thus, status handling at the cluster level is

45

3 Oakestra/Kubernetes Integration

resolved through controllers and resources.

3.3.4 Scheduling

No new scheduling methods have been employed. At the root level, the scheduling
process is governed by the established Oakestra logic, while within Kubernetes, the
standard scheduling logic is utilized. This approach ensures consistency and lever-
ages existing, well-understood mechanisms to manage resource allocation and task
distribution across the integrated system.

3.4 Communication

This section explains the communication between Oakestra and Kubernetes resources
and inter-cluster communication.

3.4.1 Container Communication

A key goal of the integration was to enable all containers or pods running within Ku-
bernetes to communicate with Oakestra services, and to communicate with resources
on other clusters, whether Oakesta or Kubernetes resources, which requires communi-
cation between clusters. Oakestra has already implemented a solution in the form of
NetManager.
However, the NetManager interacts with Oakestra’s proprietary NodeEngine and is
incompatible with the standard Container Network Interfaces (CNI). Chapter 2.2.1 has
already described a CNI and its purpose. For this reason, the Oakestra NetManager
was made CNI-compatible to work with the containers in Kubernetes. In order to
minimize the changes to the existing Oakestra code, the NetManager component at the
node level remained unchanged. In addition, a second component, the Oakestra CNI,
has emerged. The component acts as a CNI in Kubernetes and communicates with the
NetManager. This means that the Oakestra CNI and the NetManager must be present
on every Kubernetes node. This is realized with a DeamonSet. As both the CNI and the
NetManager must have root rights to adjust the routing rules and create a new network
interface in the host network of the node, the executables are first transferred onto the
file system of the node. Afterwards, the applications start natively on the node.
While the Oakestra NetManager plugin is operational, it lacks DNS capabilities and
has other vulnerabilities compared to well-known solutions like Calico and Flannel.
Specifically, network isolation has not been fully implemented because all applications
share the same network bridge on the node. Additionally, the semantic overlay is gener-
ally unnecessary in cloud environments, as dynamic switching of balancing policies is

46

3 Oakestra/Kubernetes Integration

uncommon due to reliable and homogeneous network provisioning. Consequently, the
NetManager is not the ideal standard CNI choice in Kubernetes; instead, more proven
solutions should be adopted. Although using the Oakestra CNI is feasible internally
within Kubernetes, opting for a different CNI is a better decision.
However, to facilitate communication with Oakestra Services, Kubernetes containers
require two CNIs: one to communicate with internal Kubernetes components and
another to interact with Oakestra Services. For this purpose, Multus is utilized [21].
Multus CNI is a CNI plugin for Kubernetes that enables attaching multiple network
interfaces to pods. This capability enhances network flexibility and functionality,
allowing configurations to segregate and manage traffic types across different networks
within the same Kubernetes cluster. Consequently, the Linux Network Namespace of
the containers is modified by two CNIs. While Calico, or the chosen standard CNI,
continues to manage all critical routes, the Oakestra CNI creates an additional bridge
with an interface. All Oakestra service IPs in the IPv4 and IPv6 ranges are assigned to
the Oakestra-specific interface and routed through the newly created network bridge to
the NetManager on the node. From there, the NetManager is responsible for locating
the correct address and directing the network packet accordingly. Figure 3.6 clearly
illustrates what the network namespace of a container looks like.

47

3 Oakestra/Kubernetes Integration

Figure 3.6: Inter Cluster Container Communication

All containers deployed via the Service Descriptor and thus through Oakestra are
automatically started with the optional Oakestra CNI. It is important to note that only
containers can be initially configured with the CNI at startup. No modifications to the
CNIs are possible during runtime; changes can only be made during a potential restart.
A specific Pod annotation can be set to enable communication between Kubernetes
Pods and Oakestra Services. In the background, a dedicated webhook monitors all
pods for this annotation. If the pod annotation: ["k8s.v1.cni.cncf.io/networks"] = "oakestra-
cni" is present, the controller automatically adds the Oakestra CNI configuration to
the selected Pod. This approach allows Kubernetes users to decide whether their
Kubernetes-managed pods should also communicate with Oakestra Services. Without
this additional CNI, Kubernetes pods cannot communicate with Oakestra services. The
Oakestra CNI is registered by Multus as an additional CNI, requiring the creation
of a NetworkAttachmentDefinition, a CRD generated by Multus. This NetworkAt-
tachmentDefinition must be deployed for each namespace where containers using
the Oakestra CNI will be launched with the default Kubernetes-Oakestra integration;
the Oakestra CNI is installed only in the oakestra namespace. This is particularly
important if Kubernetes Pods, managed by Kubernetes, are to be integrated into the

48

3 Oakestra/Kubernetes Integration

Oakestra network. These Pods must be deployed in a namespace where the Oakestra
CNI has been registered. For inter-cluster communication, the Oakestra network is
essential, including communication between two Kubernetes clusters. Therefore, if
Kubernetes resources in different clusters must interact, both must be registered within
the Oakestra network.

3.4.2 Communication between Components

For the registration process between the Kubernetes clusters, specifically between the
Oakestra Agent and the Oakestra Root component, a gRPC controller is utilized in
which the various messages and their contents are explicitly defined.
An HTTP REST interface facilitates other communications between the Root and the
Oakestra Agent. It is crucial that both components are accessible for this communication
to be effective.
The Node NetManager and the Oakestra Cluster Service Manager interact through
MQTT. This method is chosen because it mirrors the approach taken with other Oakestra
clusters; therefore, no changes have been made to this protocol.

3.5 Set Up Kubernetes as Oakestra Cluster

This chapter is intended to facilitate and clarify the integration of Kubernetes into the
Oakestra clusters. A variety of different components and tools are required for this
integration. All necessary resources and source codes are available in this GitHub
repository [48].

3.5.1 Prerequisites

Several critical conditions must be met to successfully integrate Kubernetes into the
Oakestra framework. Firstly, the Oakestra root must be fully operational in its standard
configuration to ensure that foundational functionalities are stable and performing
as intended. A standard Kubernetes deployment is required, with all components
properly configured to effectively handle containerized applications’ orchestration
and management. Furthermore, it is essential that all nodes within the network are
interconnected and maintain robust network connectivity. This network connectivity is
crucial, as it enables seamless communication and data exchange between nodes, vital
for the distributed operations typical of both Kubernetes and Oakestra systems.

49

3 Oakestra/Kubernetes Integration

3.5.2 Set Up Oakestra

When setting up Oakestra, deviating from the default and standard configuration is
not needed. The integration implementation is stable with Oakestra version v0.4.301.
The predefined settings provided by Oakestra are sufficiently robust to meet the
system requirements, ensuring the platform functions effectively without additional
adjustments. The complete code for the integration is available in the Oakestra GitHub
group, specifically in the plugin-kubernetes repository [48].

3.5.3 Set Up Kubernetes

A Kubernetes cluster to be registered with Oakestra currently requires Calico as CNI;
it has not yet been tested with other alternatives. In addition, the API Metrics Server
must be started and functional.

3.5.4 Install Kubernetes Plugin

All these components must be installed on the Kubernetes cluster.

• Oakestra CNI

• Multus CNI

• Oakestra Cluster Service Manager

• Oakestra Node NetManager

• Oakestra Kubernetes Agent

• Oakestra Controller Manager

The commands for starting the individual components of the integration can be found
in the Github repository. The various environment variables are explained in this
section. Firstly, those of the Oakestra Agent and two components for the networking
are Oakestra NodeNetManager and Oakestra Cluster Service Manager.
With the Oakestra Cluster Service Manager, the ClusterIP of the MQTT and MongoDB
Kubernetes services must be specified, as seen in table 3.1. These two services must
first be created in Kubernetes and then configured. Furthermore, the IP of the Oakestra
root and a Kubernetes node are required.

50

3 Oakestra/Kubernetes Integration

Variable Name Default Value Description
MY PORT 10110 Local port which starts server
MQTT BROKER PORT 10003 -
MQTT BROKER URL Needs to be set ClusterIP of Mosquitto Service
ROOT SERVICE MANAGER
URL

Needs to be set IP Oakestra Root Network

ROOT SERVICE MANAGER
PORT

10099 Port Oakestra Root Network

SYSTEM MANAGER URL Needs to be set IP Oakestra Root
SYSTEM MANAGER PORT 10000 Port Oakestra Root
CLUSTER MONGO URL Needs to be set ClusterIP of MongoDB Service
CLUSTER MONGO PORT 27017 -

Table 3.1: Configuration Variables for Oakestra Cluster Service Manager

The NodeNetManager also requires an IP of a Kubernetes node, which must be added
in the config. As described in table 3.2. The NodeNetManager needs the Node IP from
one of the Kubernetes nodes, regardless of which one, to communicate with the MQTT
server, which is published by a NodePort service. This type of service is necessary
because the NodeNetManager runs on the host network and is, therefore, not part of
the Kubernetes network.

Variable Name Default Value Description
NODE PORT 50103 Public node port for Oakestra network
MOSQUITTO SVC SERVICE
PORT

30033 -

MOSQUITTO SVC SERVICE
HOST

Needs to be set NodePort of one Kubernetes node

Table 3.2: Configuration Variables for Oakestra Node Netmanager

The Oakestra Agent requires the cluster’s name and location and the Oakestra Root’s
IP. This information is required for registering with the root component, described in
table 3.3. In addition, any IP from a Kubernetes node is required for the Oakestra Agent
to communicate with the Cluster Service Manager, as it is published as a NodePort
service.

51

3 Oakestra/Kubernetes Integration

Variable Name Default Value Description
ROOT SYSTEM MANAGER IP Needs to be set IP Oakestra Root
ROOT SYSTEM MANAGER
PORT

10000 Port Oakestra Root

ROOT SERVICE MANAGER
PORT

10099 Port Oakestra Network Root

ROOT GRPC PORT 50052 Port GRPC Root
CLUSTER NAME Needs to be set Name of Cluster
CLUSTER LOCATION Needs to be set Location of Cluster
MY PORT 10100 Local port which starts server
NODE PORT 30000 Exposed public port to Root, needs to be in

range 30000-32767
CLUSTER SERVICE
MANAGER PORT

30330 NodePort for Cluster Service Manager

CLUSTER SERVICE
MANAGER IP

Needs to be set Node IP of any Kubernetes node

Table 3.3: Configuration Variables for Oakestra Agent

To uninstall Oakestra, all deployments must be deleted. A quick method is to delete
the namespaces created for Oakestra during the initial setup. These include oakestra,
oakestra-system and oakestra-controller-manager.

52

4 Evaluation

This chapter aims to highlight the advantages and disadvantages of the design decisions
in this project, demonstrating the scenarios where this approach is expected to be
sensible and outlining the path for further development of the platform.

4.1 Experimental Set Up

The testbed used for testing and comparing the Kubernetes plugin for Oakestra consists
of 8 VMs. The resources are part of iCS (inovex Cloud Services) and, thus, part of the
inovex company. The setup also includes 8 Raspberry Pis with different resources.

• 8 VMs Size c5Large

– 4 CPUs

– 4 GB of Memory

• 2 Raspberry Pi 5:

– Broadcom BCM2712 2.4GHz quad-core 64-bit Arm Cortex-A76 CPU

– 512KB per-core L2 caches and a 2MB shared L3 cache

• 4 Raspberry Pi 3:

– Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

– 1GB RAM

• 2 Raspberry Pi 2:

– A 900MHz quad-core ARM Cortex-A7 CPU

– 1GB RAM

All virtual machines (VMs) were Linux-based, running Ubuntu 22.04 LTS on an x86
architecture. The Raspberry Pis had the headless Raspberry Pi OS installed on an ARM
architecture, corresponding to the recommended version for their hardware. Worker
nodes for Oakestra clusters were exclusively deployed on the Raspberry Pis to simulate

53

4 Evaluation

restricted edge devices. The more powerful VMs were reserved for all cloud compo-
nents, including the Cloud Oakestra components. Each experiment was conducted five
times over several days, with only one framework running simultaneously.

4.2 Evaluation Results

This chapter elaborates on the evaluation outcomes, detailing the concept and execution
of the distinct tests. The tests examine the overhead incurred using the Oakestra tool
alongside other metrics like the actual deployment time and the effects on the root
component. The tests compare the Oakestra Kubernetes plugin with Vanilla Kubernetes,
Karmada, and OCM. It should be noted in advance that the architectures of Karmada
and OCM differ fundamentally from those of Oakestra. As a result, direct comparisons
are only possible to a limited extent, as Karmada and OCM have more functional
similarities than Oakestra. In addition, it should be noted that K-Oakestra refers to a
Kubernetes cluster managed by Oakestra in this chapter.

Test Methodology

In the overhead tests in 4.2.1 and 4.2.2, CPU usage, memory usage, and network traffic
were measured using Prometheus. CPU utilization was recorded as the total CPU time
consumed in seconds over the last minute with the following Prometheus query:

sum(rate(container_cpu_usage_seconds_total[1m]))

Memory usage was assessed using the working set memory value, retrieved with the
query:

sum(container_memory_working_set_bytes{pod=~"{SELECTED_PODS}", namespace
=~"{SELECTED_NAMESPACE}"}) by (pod, namespace)

The incoming and outgoing bytes and packets were measured using the following
query for networking. Prometheus aggregates the entries of all network interfaces
within the container’s network namespace, providing a comprehensive view of the
network traffic.

sum(rate(container_network_transmit_packets_total[1m])) by (container,
pod, namespace)

Additional measurements were conducted following similar methodologies.

54

4 Evaluation

4.2.1 Overhead Plugin

Utilizing the Kubernetes Oakestra plugin initiates several components within Kuber-
netes, a process mirrored in Karmada and OCM implementations. In all three scenarios,
components are activated within Kubernetes to link the respective clusters to the root
component. These newly initiated components consume resources. Four identical Ku-
bernetes clusters, each with six nodes, were established to ascertain the precise resource
consumption of these components when idle. The first cluster operated without addi-
tional components, while the remaining three were each equipped with components for
integration with Oakestra, Karmada, and OCM, respectively. Furthermore, Prometheus
was installed to facilitate the extraction of specific metrics, particularly those related to
containers, nodes, and network metrics. Each measurement was replicated five times,
and the median of CPU and Memory measurements and the mean of network traffic
were computed to mitigate anomalies.

CPU Usage and Memory Usage

The average CPU utilization across the 6 instances is very similar. All 4 tests show CPU
utilization of the 6 nodes between 23,876 and 23,890, corresponding to the total CPU
seconds utilized per minute. This value can be divided by the number of nodes to
calculate the average utilization per node. This small difference is insignificant, as CPU
utilization can fluctuate within this range. Therefore, it can be concluded that none of
the three tools requires exceptionally high CPU utilization. To determine more precise
differences, we should examine the utilization of the pods.
Figure 4.1a shows the overall median CPU utilization of the plug-in components
required to integrate into the multicluster tool. In other words, the median of the
individual utilization of the pods added together. It can be seen that K-Oakestra has
the highest CPU utilization at 0.017292 seconds of usage per minute, which is relatively
low but 4x higher than Karmada with 0.004315 seconds. OCM falls in between, with
a value of 0.012236 seconds. Figure 4.1c further illustrates this finding by detailing
the CPU used per pod. It can be observed that K-Oakestra deploys more single
components, leading to the highest CPU consumption, mainly due to MongoDB, which
takes 0.009723 seconds, accounting for 56% of the total value.
The analysis of average memory usage reveals that K-Oakestra consistently consumes
the most resources, averaging around 296.39 MB. This is depicted in Figure 4.1b,
which illustrates the median working set bytes per pod for each framework. Karmada
consumes only 48,56 MB, whereas OCM uses approximately 149,21 MB. When analyzed
by individual pods, MongoDB is the most resource-intensive, consuming 141,55 MB.
Each Node-Netmanager consumes 24,43 MB; with six instances, the total consumption

55

4 Evaluation

is 146,58 MB. Replacing the SQL database could save resources here and thus consume
resources similar to OCM. It should be noted that Node-NetManager works across six
instances but is only shown once in the overall graphic. This means that the resource
consumption of the Node-NetManager still has to be multiplied by the number of
nodes in the cluster.

Ressource Utilization Frameworks

(a) CPU Usage Framework (b) Memory Usage Framework

Pod Utilization

(c) CPU Usage Framework Pods (d) Memory Usage Framework Pods

Figure 4.1: Resource Utilization Overhead Plugin

Network

The network analysis examines the bytes and the number of transmitted packets within
the cluster. A lower number indicates better performance, as reduced traffic signifies less
network utilization. The measurements were carried out with Prometheus, whereby all
bytes and packets of all container network interfaces are added up. The measurements
indicate the number of bytes and packets over a 5-minute interval. The evaluations
in Figure 4.2 (a) and (b) show that the cluster in which the K-Oakestra plugin was
started receives and sends the most bytes and packets. As expected, Kubernetes has
the least network traffic. Examining container orchestration frameworks revealed that
K-Oakestra exhibited the greatest network traffic volume. The Oakestra framework

56

4 Evaluation

received 0.627 MB and transmitted 0.905 MB. Karmada followed with a noticeably
lower traffic profile, registering 0.374574 MB received and 0.532 MB transmitted. OCM
displayed minimal traffic consumption among the frameworks, recording 0.346 MB
received and 0.500 MB transmitted. Kubernetes has the lowest traffic workload, with
0.330 MB received and 0.464 MB transmitted. Figure 4.2c details the components
responsible for this discrepancy. This includes the Oakestra Agent, which receives 9386
bytes in 605 packets, mainly triggered by the Metrics Server, which constantly sends
information to the Oakestra Agent. However, this is not the only reason K-Oakestra
generates the most traffic. Figure 4.2e shows the 20 pods with the highest network
traffic among all pods in all four clusters. 8 of these can be attributed to Oakestra.
This is partly due to the additional components required to launch the Kubernetes
plugin. These components include multus-cni and the cert-manager. The increased
communication triggered by these components leads to increased activity in Calico,
Prometheus, and the Kube server. As a result, the total network capacity used by
K-Oakestra (1,54 MB) significantly exceeds that of Kubernetes (0.795 MB) by 1,9 times.
In comparison, Karmada (0.906 MB) exceeds Kubernetes by 1,15 times, and OCM (0.846
MB) exceeds Kubernetes by 1,06 times.

57

4 Evaluation

Network Traffic per Framework

(a) Total Bytes Framework [5min] (b) Total Packets Framework [5min]

Network Traffic Plugin Components

(c) Total Bytes Plugin Pods [5min] (d) Total Packets Plugin Pods [5min]

(e) Pod Network Traffic across frameworks [20 highest, 5min]

Figure 4.2: Network Traffic Overhead Plugin

58

4 Evaluation

4.2.2 Overhead Management

All deployment requests proceed through this central unit by centralizing management
of the Kubernetes cluster via a root component. This test assesses whether adminis-
tration through a root component incurs additional overhead during execution. For
this purpose, a load test was designed, generating 10 clients and 10 servers. The
client images were crafted individually, containing a minimal version of a Go HTTPS
client and a Go HTTP server. Each client initiates 10 users who send requests to the
server concurrently. The server, in turn, executes a computationally intensive task to
simulate load. In the Karmada and OCM clusters, the Kubernetes network is utilized.
In the Oakestra cluster, both the Kubernetes and the Oakestra network are employed to
evaluate the specific overhead introduced by the Oakestra network.
A second test setup was used to evaluate communication overhead between two clus-
ters within the Oakestra network. In this setup, two Kubernetes clusters managed
by Oakestra were subjected to the same load test as in single-cluster tests, where
the applications can be deployed on two different clusters. This evaluation was con-
ducted exclusively with Oakestra due to the distinct communication mechanisms in
Karmada and Open Cluster Management (OCM) and the critical role of the root com-
ponent in these architectures. Therefore, directly comparing metrics for inter-cluster
communication is not feasible.

CPU Usage and Memory Usage

As in the previous test, the median CPU load of the individual pods is added and
evaluated. In the Oakestra scenario, load test communication occurs exclusively via
the Oakestra network. Later, there is a comparison between the Oakestra network
and the Kubernetes network. In Figure 4.3, it can again be seen that K-Oakestra
requires the most resources. CPU-wise, K-Oakestra uses 0.0170 seconds of CPU time,
which is 3,2 times more than Karmada’s 0.0052 seconds and 1,12 times more than
OCM’s 0.01516 seconds, as shown in subplot (a). Subplot (c) shows the individual
CPU Usage time of the plugin pods. As in the OverheadPlugin Test, MongoDB is
the largest factor in resource consumption. It takes 0.0079 seconds and is therefore
responsible for 46% of the total Oakestra plugin CPU usage. In general, however,
there is an increase in resource consumption compared to the overhead plugin test
in which no implementations were started. K-Oakestra has CPU Usage decreased by
2%, indicating that the Oakestra Plugins do not increase CPU usage when deploying
services. The node-netmanager, rising from zero to 0.000906 seconds per instance, is
the only component that shows an increase. With 6 instances, this totals 0.0012 seconds.
Karmada’s CPU usage increases by 1,22 to 0.005273 seconds, while OCM’s CPU usage

59

4 Evaluation

increases by 1,23 to 0.015162 seconds. Subplot 4.3b depicts the Memory Usage of the
complete framework. In the load test, K-Oakestra’s memory usage increased by 1,91
times to 567,72 MB, significantly exceeding both competitors. It is noteworthy that
the NodeNetManager was included only once. This time, it consumed 62,12 MB per
instance, totaling 372,72 MB for six instances. This usage surpasses that of MongoDB,
which used 355,47 MB. Additionally, the Cluster Service Manager’s memory usage
increased to 82,35 MB. Karmada’s memory usage increased by 1,27 times to 61,71
MB. In contrast, OCM experienced a 2% decrease, indicating that its memory usage
remained stable. During the load test, K-Oakestra’s RAM usage is x9,19 times higher
than Karmada’s, and compared to OCM, K-Oakestra uses x3,86 times more memory.
The main reasons are the NodeNetManager, which has to run on every node, and
MongoDB. Together, these account for 73% of the total memory consumption.

Ressource Utilization Frameworks

(a) CPU Usage Framework (b) Memory Usage Framework

Pod Utilization

(c) CPU Usage Framework Pods (d) Memory Usage Framework Pods

Figure 4.3: Resource Utilization Overhead Management

To evaluate the indirect impact on CPU utilization within the system, we examine the
namespace pods collectively. The load test deployments are excluded from this analysis.
Figure 4.4a displays two bars per framework: one representing the sum of the medians
of the pods from all namespaces associated with the plugin and the other representing

60

4 Evaluation

the sum of the medians of the pods from namespaces related to the system, including
kube-Prometheus-stack and kube-system.
In this analysis, Kubernetes, without any installed plugins, shows a CPU utilization
of 0.582643 seconds for system components, closely aligning with Karmada, which
registers 0.579607 seconds for system components and 0.005212 seconds for the plugin.
Conversely, OCM records 0.570737 seconds for the system and 0.015162 seconds for
the plugin. K-Oakestra has the highest CPU utilization for the plugin at 0.026987
seconds but the lowest for system components at 0.507274 seconds, resulting in an
8,9% reduction in system component consumption. This reduction is primarily due
to the lower resource consumption of the Kube API server, as depicted in Figure
4.4b, where it requires 0.133678 seconds for Kubernetes and only 0.108241 seconds for
K-Oakestra. Additionally, the kube-controller manager shows a reduction, requiring
0.034494 seconds for Kubernetes and only 0.022677 seconds for K-Oakestra. This is
mainly attributed to the reduced number of API server requests within the Oakestra
network.

(a) Plugin vs. System CPU Usage (b) Kubernetes Pods CPU Usage

Figure 4.4: Indirect CPU Usage Impact

The Oakestra plugin facilitates communication through the Oakestra network and the
Kubernetes network. To determine the impact of these networks on CPU load, load
tests were conducted separately for each network. The median CPU utilization for the
system components was 0.549240 seconds, while for the plugin, it was 0.016159 seconds.
This suggests the Oakestra Plugin requires fewer CPU resources when utilizing the
Kubernetes network. However, the overall CPU usage increases due to the system
components.

61

4 Evaluation

Network

n the overhead management test, network utilization varied significantly across different
frameworks. The test considered the number of bytes and packets transmitted within
the cluster. Notably, lower values indicate less network utilization, which is preferable.
Figure 4.5a illustrates that Karmada exhibited the highest network utilization, with 4,59
MB received and 4,95 MB sent. This utilization is 2,19 times greater than Kubernetes,
which recorded 2,15 MB received and 2,29 MB sent. OCM’s network utilization was
closely aligned with Kubernetes, with 2,57 MB received and 2,29 MB sent. In contrast, K-
Oakestra demonstrated the lowest network utilization, with 0.96 MB received and 1,24
MB sent, amounting to 49,5% of Kubernetes’ utilization. This indicates that Oakestra’s
network sends significantly fewer messages, as evidenced by the packet counts shown
in Figure 4.5b.

Network Traffic per Framework

(a) Total Bytes Framework [5min] (b) Total Packets Framework [5min]

Network Traffic Plugin Components

(c) Total Bytes Plugin Pods [5min] (d) Total Packets Plugin Pods [5min]

Figure 4.5: Network Traffic Overhead Management

The individual network traffic of the pods and plugins is depicted in Figure 4.5c. The

62

4 Evaluation

Oakestra agent again exhibits the highest traffic, increasing by a factor of 1,24 to reach
11644 bytes received, which accounts for 86% of the total network traffic of the plugin’s
pods. Notably, the components of OCM demonstrate a significant rise; the total traffic
of the OCM plugin increases by a factor of 1,83, from 3780 to 6929 bytes. Similarly,
Karmada shows a rise in traffic by a factor of 1,13, increasing from 5296 to 5991 bytes.
The total traffic for K-Oakestra also increases, with a factor of 1,31, from 10218 bytes to
13487 bytes.

Figure 4.6: Pod Network Traffic across frameworks [20 highest, 5min]

Figure 4.6 illustrates that three specific pods generate significant traffic in all four
scenarios: the Calico Nodes, the Prometheus Stack, and the Kube API Server. In the
Oakestra scenario, two other pods exhibit high traffic levels: the Node-Netmanager,
which operates on each node, and the Kube-Multus pod, which also runs on every
node.

Inter Cluster Commmunication

Figure 4.7 displays the test results of communication between two clusters using the
Oakestra Network. Although there is no exact equivalent for comparison, the data
indicate that the communication patterns are remarkably similar to those observed in

63

4 Evaluation

a single cluster. This similarity suggests that multi-cluster communication does not
introduce significant overhead.
Due to the very different architecture in OCM and Karmada, there is no direct com-
parison to the legacy alternatives here; only the results of K-Oakestra are shown and
described.

Ressource Utilization Frameworks

(a) Total Bytes Framework Pods [5min] (b) Total Packets Framework Pods [5min]

Pod Utilization

(c) Total Bytes Pods [19 highest, 5min] (d) Total Packets Pods [19 highest, 5min]

Figure 4.7: Network Traffic Inter-Cluster Communication

Utilizing Prometheus, a comprehensive measurement of messages received across
all interfaces within the container network namespace was conducted (Fig. 4.7). A
significant traffic increase toward the Node Netmanager was observed as anticipated.
This phenomenon can be attributed to the higher client-to-server ratio within Cluster
2, resulting in increased requests. The subsequent visualization 4.7c depicts the 19
pods exhibiting the most prominent network activity across both clusters. This data
reveals a noticeably lower level of network traffic in Cluster 1, which aligns with the
reduced number of deployments deployed within that cluster. Interestingly, the analysis
indicates a comparable number of packets transmitted across both clusters.

64

4 Evaluation

4.2.3 Deployment Time

The duration required to deploy and shut down resources typically holds minor
practical importance, yet it is scrutinized in this test. The objective is to determine
if management by a root component affects the speed of these operations. For this
purpose, 100 small Go binaries are initiated, each designed to start and await only a
SIGTERM command. A small HTTP server is also implemented, providing a /ready
endpoint. Kubernetes engages this endpoint through the ReadinessProbe to ascertain
any potential disparities. Across all four tools, 100 deployments are executed to evaluate
this aspect.
Figure 4.8a delineates the time required to initiate a deployment, segmented into
four consecutive sub-stages. These stages correspond to status changes read from
the Kubernetes Pod. Notably, the "Deployed to Pod Scheduled" phase, highlighted
in blue, exhibits the most significant variance among the technologies. This phase
spans from the client’s request to the pod’s scheduling by the Kubernetes cluster
deploying the service. It is observed that Vanilla Kubernetes expedites this process,
requiring minimal time from request to scheduling due to the absence of intermediary
instances. In contrast, the other three technologies experience substantial delays due to
additional overhead, with OCM taking 7770 milliseconds as the mean value to trigger a
service deployment and K-Oakestra taking 3850 milliseconds, Karmada taking 363,33
milliseconds, whereas vanilla Kubernetes only takes 86,6 milliseconds. It is also worth
mentioning that these measurements were taken under the condition of 100 consecutive
deployments; the time required for a single deployment would be shorter.
The remaining three phases, internal to Kubernetes, show similar patterns among the
technologies. Interestingly, Karmada takes the longest during the second step. The
third step, "Init to Container Ready," is nearly identical across all four technologies. The
final step is deemed negligible in its duration.
The second figure 4.8b regarding deployment time illustrates the mean duration re-
quired to delete one single deployment when 100 deployments are deleted at the same
time. K-Oakestra takes the longest to complete this process, with 5400 ms. Whereas
OCM takes 473,3 ms, Karmada 1200.0 with ms is very close to Kubernetes with 1110.0
ms. The depicted time span from the deletion request to the point where Kubernetes
confirms the absence of the deployment upon the query. Additionally, it is interesting
that OCM completes this task the fastest, surpassing even Vanilla Kubernetes in speed.
The third plot 4.8c for DeploymentTime presents the aggregate time necessary to initiate
and delete 100 deployments. Consistently, Vanilla Kubernetes is identified as the fastest
in both starting and deleting deployments. OCM takes the most time to deploy and
delete (91000 ms), although the deletion time of a single deployment was fast, indicating
longer periods between requests. Kubernetes deletes all deployments in 25666 ms and

65

4 Evaluation

Karmada in 48333 ms. It is noteworthy that K-Oakestra achieves the fastest deletion
time of 40,666 milliseconds. This is unexpected, given that individual deployments take
the longest time. However, due to Oakestra’s architecture, many deployments can be
deleted simultaneously, resulting in a significantly quicker overall deletion process. It is
also important to mention that deleting a single deployment is faster than the measured
time for deleting 100 deployments. K-Oakestra takes 76666 milliseconds to start all
deployments, while Karmada takes 71333 milliseconds, exhibiting similar performance.
OCM completes the process in 62666 milliseconds, whereas Kubernetes is the fastest,
with a deployment time of 36333 milliseconds. OCM takes 2,47 times longer in total
deployment deletion time than Kubernetes, while K-Oakestra and Karmada take only
1,9 times longer.

(a) Average Deployment Time Single Deploy-
ment

(b) Average Clean Up Time Single Deploy-
ment

(c) Total Time Deployment and Clean Up 100x
Services

Figure 4.8: Deploy Undeploy Orchestration Frameworks

66

4 Evaluation

4.2.4 Impact Oakestra Root

Thanks to the integration capabilities with Kubernetes, Kubernetes clusters can be
linked to the Oakestra Root. The architecture of this integration is crafted so that
there is no distinction for the Oakestra Root, whether it is connected to an Oakestra
or a Kubernetes cluster. This test explores and assesses whether Kubernetes clusters
influence the root component differently than Oakestra clusters. To facilitate this
investigation, 3 Kubernetes and 3 Oakestra clusters were established. At any given
time, three clusters were connected to the root. Initially, three Kubernetes clusters were
connected, followed by a sequential replacement of one Kubernetes cluster with an
Oakestra cluster, and so forth. During the test, a workload is initiated to create a realistic
scenario, similar to the one used in overhead management but with significantly fewer
deployments.
Figure 4.9a illustrates the CPU utilization of the root component in Oakestra during the
login processes of various clusters. It is evident that there are no substantial fluctuations
in CPU utilization, suggesting that the deployment of Kubernetes clusters does not
significantly impact the root component’s performance. In each scenario, the CPU
utilization ranges between 1,8194% and 1,8347%, indicating that the differences are
only in the hundredths of a percent.

(a) CPU Usage (b) Memory Usage

Figure 4.9: Resource Usage Impact on Oakestra Root

A minor peak is observed in the memory utilization for scenario 2, Kubernetes 1
Oakestra, as shown in figure 4.9b. All scenarios, except for 2k1o, have a utilization
of 1,5 GiB. In the 2k1o scenario, the utilization increased to 1,53 GiB, representing a
2% increase. This anomaly cannot be attributed to the cluster type, suggesting other
underlying factors that did not interfere with the plugin. Given that similar impacts

67

4 Evaluation

are recorded for both three Kubernetes and three Oakestra clusters, as shown in Figure
4.9b, it can be inferred that the influence remains consistent regardless of whether the
clusters are Kubernetes or Oakestra.
Therefore, it can be concluded that Kubernetes clusters do not exert an increased impact
on the root component in terms of both memory and CPU utilization, consistent with
the intended architecture

68

5 Conclusion

The primary objective of this work is to integrate a Kubernetes cluster into the Oakestra
Multi-Cluster Tool. The complete source code is open source and available in the
Oakestra GitHub group, specifically within the plugin-kubernetes repository [48]. The
outlined integration primarily relies on a Kubernetes cluster designed to emulate
an Oakestra cluster. It offers identical endpoints and services to those found in
a traditional Oakestra setup. Consequently, the root does not require differentiation
among clusters since they all provide equivalent interfaces. The implementation utilized
standard Kubernetes extension mechanisms, such as custom resource definitions and
controllers, constituting the operator pattern. This approach enables the incorporation
of any Oakestra resource into the integration using the operator pattern without
necessitating additional logic. Moreover, with minor modifications, Oakestra’s pre-
existing network infrastructure and technology were employed. Specifically, a CNI
(Container Network Interface) intermediary layer was introduced between the container
and the Oakestra network component, rendering the CNI component compatible. This
network component additionally establishes a gateway that routes all IP addresses
within the subnet of all service IPs to the network component of Oakestra, thus
facilitating connectivity between containers.
The evaluation compares this approach to vanilla Kubernetes and two other multi-
cluster Kubernetes orchestrators. Recognizing that each Kubernetes Multi-Cluster
Orchestrator adheres to a distinct architectural framework is crucial. These orchestrators
utilize a central hub cluster that serves as the root, with significant logic concentrated
within the hub cluster rather than distributed across individual clusters, unlike in
the Oakestra framework. This architectural difference results in a less-than-ideal
comparison between the tools.
The current integration implementation is compatible with the default CNI Calico
and the container engine CRI-O [15]. Other container engines, such as Docker, may
handle the network namespaces of containers differently, potentially causing issues
with the Oakestra CNI. Additionally, it is crucial to ensure that Calico does not use
the newly created interfaces for the Oakestra CNI when autodetecting the interface
of the container network namespace. Specifically, with Calico, you can specify which
interfaces should be overwritten. If an alternative CNI is used instead of Calico, no
Oakestra interface must be utilized.

69

5 Conclusion

It should also be noted that Oakestra is presently a research project, and, as such, it
lacks some of the robustness and functionality found in Kubernetes. However, Oakestra
is under continuous development.
As highlighted in chapter 4, using the Oakestra Network via the Oakestra CNI signif-
icantly reduces network traffic, as shown in Figure 4.5. Additionally, the integration
of the Kubernetes cluster has minimal impact on Oakestra Root, with both CPU and
memory usage remaining identical, as shown in Figure 4.9. Furthermore, Figure 4.8c
demonstrates that while deployment by Oakestra increases compared to standalone
Kubernetes, its performance remains comparable to two other multi-cluster tools.

5.1 Limitations and Future Work

The current state of the multi-cluster methodology presents several advantages, yet
it also encounters certain limitations that require further consideration. Among these
limitations is the limited capability of the Oakestra API. To fully leverage the extensive
functionalities offered by Kubernetes, the existing Oakestra API cannot be utilized with
the service descriptor. Instead, the respective Kubernetes API server must be employed.
A potential enhancement involves expanding the API of the Root Orchestrators to
ensure that the registration of various clusters also extends the API. Alternatively,
developing a robust, general API—which aligns with the current direction but requires
further expansion—could be pursued.
Identifying the ServiceIP when a container is initiated and deployed by Kubernetes is
currently somewhat challenging. Available options for identifying the ServiceIP include
consulting the database or querying the Oakestra API. An additional annotation could
be added to the pod containing this value, facilitating the integration of the Oakestra
network within a Kubernetes environment.
Another deficiency in the integration is the potential for discrepancies between the
Kubernetes cluster database and the Oakestra Root. This issue arises if the Oakestra
Root does not delete Oakestra resources within Kubernetes. Additionally, manual
deletions of an object from the CRDs can lead to status inconsistencies that result
in errors, as these changes are not reflected in the Root. The precise cause of this
undesirable behavior warrants further investigation.
The integration of the Kubernetes API into the Oakestra API could be further devel-
oped by filtering requests and routing them to a Kubernetes cluster. This represents a
potential extension wherein the APIs are integrated within the root component, encom-
passing all associated clusters. In future developments, this strategy aims to streamline
interactions and data flow between the root component and individual clusters.
An additional feature that should be incorporated into the root component of a Multi-

70

5 Conclusion

Cluster Cloud to Edge Orchestrator is the capability to influence the scheduling deci-
sions within the cluster by utilizing diverse types of clusters. Specifically, some clusters
may be deployed in cloud environments, while others operate exclusively in edge
locales. This distinction should be utilized as an additional criterion for scheduling
tasks. Furthermore, enabling the grouping of clusters based on specific characteristics
could enhance the management and operational efficiency of the orchestrator. This
would allow for clusters to be grouped depending on the group’s attributes, facilitating
targeted deployment and resource allocation strategies.
The deployment of Oakestra components on Kubernetes using a Helm chart represents
a significant advancement that simplifies the tool’s usability and management. This
approach means that the user merely needs to retrieve and install the Helm chart,
streamlining the setup process and enhancing user experience.
Other possible improvements for the integration include reducing resource consump-
tion. For instance, replacing the MongoDB database could be beneficial. Opting for
a database with lower resource consumption or exploring alternative storage meth-
ods may offer advantages. Utilizing Kubernetes extensions such as Custom Resource
Definitions could be a viable option for storing the state of the Oakestra network.

71

List of Figures

2.1 Architecture Multi-Cluster: 2-Layer . 9
2.2 Architecture Multi-Cluster: 3-Layer . 11
2.3 Architecture Multi-Cluster: 4(+)-Layer . 11
2.4 High Level Architecture SODALITE@RT [35] 20
2.5 High Level Architecture Karamada [26] 26
2.6 High Level Architecture KubeAdmiral [31] 27
2.7 High Level Architecture OCM [51] . 28
2.8 High Level Architecture K3s [55] . 30
2.9 High Level Architecture KubeEdge [56] 31
2.10 High-Level Architecture Oakestra . 32

3.1 Hierarchical Design Decision . 36
3.2 Integration Approaches Kubernetes-Oakestra 38
3.3 High-Level Architecture: Oakestra - Kubernetes Integration 39
3.4 Example Yaml OakestraJob Custom Resource Object 42
3.5 Oakestra-Kuberetes Integration: Orchestration Flow 45
3.6 Inter Cluster Container Communication 48

4.1 Resource Utilization Overhead Plugin . 56
4.2 Network Traffic Overhead Plugin . 58
4.3 Resource Utilization Overhead Management 60
4.4 Indirect CPU Usage Impact . 61
4.5 Network Traffic Overhead Management 62
4.6 Pod Network Traffic across frameworks [20 highest, 5min] 63
4.7 Network Traffic Inter-Cluster Communication 64
4.8 Deploy Undeploy Orchestration Frameworks 66
4.9 Resource Usage Impact on Oakestra Root 67

72

List of Tables

2.1 Basic Components Cloud To Edge Continuum [58] 18
2.2 Key Pillars of OpenFog Reference Architecture 19

3.1 Configuration Variables for Oakestra Cluster Service Manager 51
3.2 Configuration Variables for Oakestra Node Netmanager 51
3.3 Configuration Variables for Oakestra Agent 52

73

Bibliography

[1] M. Ahuja, N. Sukhavasi, S. Choudhury, K. A. Das, K. Singi, K. Dey, and V.
Kaulgud. “MCDA Framework for Edge-Aware Multi-Cloud Hybrid Architecture
Recommendation.” In: Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’22. New York, NY, USA: Association
for Computing Machinery, 2023. isbn: 9781450394758. doi: 10.1145/3551349.
3559501.

[2] J. Arulraj, A. Chatterjee, A. Daglis, A. Dhekne, and U. Ramachandran. “eCloud:
A Vision for the Evolution of the Edge-Cloud Continuum.” In: Computer 54.5
(2021), pp. 24–33. doi: 10.1109/MC.2021.3059737.

[3] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and J. Ott.
“Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Com-
puting.” In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, July 2023, pp. 215–231. isbn: 978-1-939133-35-9.

[4] M. Beck, M. Werner, S. Feld, and T. Schimper. “Mobile Edge Computing: A
Taxonomy.” In: Jan. 2014.

[5] K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya. “Trends and challenges in
cloud datacenters.” In: IEEE Cloud Computing 1.1 (2014), pp. 10–20. doi: 10.1109/
MCC.2014.26.

[6] S. Bohm and G. Wirtz. “PULCEO - A Novel Architecture for Universal and
Lightweight Cloud-Edge Orchestration.” In: 2023 IEEE International Conference
on Service-Oriented System Engineering (SOSE). 2023, pp. 37–47. doi: 10.1109/
SOSE58276.2023.00011.

[7] D. Bringhenti, R. Sisto, and F. Valenza. “Security automation for multi-cluster
orchestration in Kubernetes.” In: 2023 IEEE 9th International Conference on Network
Softwarization (NetSoft). 2023, pp. 480–485. doi: 10.1109/NetSoft57336.2023.
10175419.

[8] B. Burns and D. Oppenheimer. “Design Patterns for Container-based Distributed
Systems.” In: 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
16). Denver, CO: USENIX Association, June 2016.

74

https://doi.org/10.1145/3551349.3559501
https://doi.org/10.1145/3551349.3559501
https://doi.org/10.1109/MC.2021.3059737
https://doi.org/10.1109/MCC.2014.26
https://doi.org/10.1109/MCC.2014.26
https://doi.org/10.1109/SOSE58276.2023.00011
https://doi.org/10.1109/SOSE58276.2023.00011
https://doi.org/10.1109/NetSoft57336.2023.10175419
https://doi.org/10.1109/NetSoft57336.2023.10175419

Bibliography

[9] California Office of the Attorney General. California Consumer Privacy Act (CCPA).
https://oag.ca.gov/privacy/ccpa. Accessed on: 15 April 2024. 2024.

[10] K. Cao, Y. Liu, G. Meng, and Q. Sun. “An Overview on Edge Computing Re-
search.” In: IEEE Access 8 (2020), pp. 85714–85728. doi: 10.1109/ACCESS.2020.
2991734.

[11] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman. “Bringing the cloud to the
edge.” In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE. 2014, pp. 346–351.

[12] X. Chen, L. Jiao, W. Li, and X. Fu. “Efficient multi-user computation offloading
for mobile-edge cloud computing.” In: IEEE/ACM transactions on networking 24.5
(2015), pp. 2795–2808.

[13] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan. “How close
is close enough? Understanding the role of cloudlets in supporting display
appropriation by mobile users.” In: 2012 IEEE international conference on pervasive
computing and communications. IEEE. 2012, pp. 122–127.

[14] Cloud Native Computing Foundation. Multicluster Management - CNCF Technology
Radar June 2021. Accessed: [Insert today’s date]. June 2021.

[15] CRI-O: Lightweight Container Runtime for Kubernetes. https://cri-o.io/. Ac-
cessed: 2024-06-05.

[16] Q. Duan, S. Wang, and N. Ansari. “Convergence of Networking and Cloud/Edge
Computing: Status, Challenges, and Opportunities.” In: IEEE Network 34.6 (2020),
pp. 148–155. doi: 10.1109/MNET.011.2000089.

[17] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang. “Impact of cloudlets on in-
teractive mobile cloud applications.” In: 2012 IEEE 16th international enterprise
distributed object computing conference. IEEE. 2012, pp. 123–132.

[18] GDPR Info. General Data Protection Regulation (GDPR). https://gdpr-info.eu.
Accessed on: 15 April 2024. 2024.

[19] P. Gkonis, A. Giannopoulos, P. Trakadas, X. Masip-Bruin, and F. D’Andria. “A
Survey on IoT-Edge-Cloud Continuum Systems: Status, Challenges, Use Cases,
and Open Issues.” In: Future Internet 15.12 (2023). issn: 1999-5903. doi: 10.3390/
fi15120383.

[20] M. Goudarzi, S. Ilager, and R. Buyya. “Cloud Computing and Internet of Things:
recent trends and directions.” In: New Frontiers in Cloud Computing and Internet of
Things (2022), pp. 3–29.

75

https://oag.ca.gov/privacy/ccpa
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2020.2991734
https://cri-o.io/
https://doi.org/10.1109/MNET.011.2000089
https://gdpr-info.eu
https://doi.org/10.3390/fi15120383
https://doi.org/10.3390/fi15120383

Bibliography

[21] K. N. P. W. Group. Multus-CNI: A CNI meta-plugin for multi-homed pods in Ku-
bernetes. https://github.com/k8snetworkplumbingwg/multus-cni. Accessed:
2024-06-10. 2024.

[22] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and M. Satyanarayanan.
“The impact of mobile multimedia applications on data center consolidation.” In:
2013 IEEE international conference on cloud engineering (IC2E). IEEE. 2013, pp. 166–
176.

[23] J. Hong, T. Dreibholz, J. Schenkel, and J. Hu. “An Overview of Multi-cloud
Computing.” In: Mar. 2019, pp. 1055–1068. isbn: 978-3-319-98284-7. doi: 10.1007/
978-3-030-15035-8_103.

[24] W. Huang, Y. Huang, S. He, and L. Yang. “Cloud and edge multicast beamform-
ing for cache-enabled ultra-dense networks.” In: IEEE Transactions on Vehicular
Technology 69.3 (2020), pp. 3481–3485.

[25] L. Jiao, R. Friedman, X. Fu, S. Secci, Z. Smoreda, and H. Tschofenig. “Cloud-
based computation offloading for mobile devices: State of the art, challenges and
opportunities.” In: 2013 Future Network & Mobile Summit (2013), pp. 1–11.

[26] Karmada Project. Karmada: Visualization and Management for Kubernetes. https:
//github.com/karmada-io/karmada. Accessed on: 15 April 2024. 2024.

[27] J. Ke. Kubeadm Scripts: Scripts & Kubernetes manifests for Kubeadm Kubernetes cluster
setup. https://github.com/JakobKe/kubeadm-scripts. Accessed: 2024-06-10.
2024.

[28] J. Ke. Oakestra Kubernetes Plugin Evaluation. https://github.com/JakobKe/
oakestra-kubernetes-plugin-evaluation. Accessed: 2024-06-10. 2024.

[29] T. Kormaník and J. Porubän. “Exploring GitOps: An Approach to Cloud Cluster
System Deployment.” In: 2023 21st International Conference on Emerging eLearning
Technologies and Applications (ICETA). 2023, pp. 318–323. doi: 10.1109/ICETA61311.
2023.10344182.

[30] K. Kritikos, P. Skrzypek, and M. Różańska. “Towards an Integration Methodology
for Multi-Cloud Application Management Platforms.” In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing Companion. UCC
’19 Companion. Auckland, New Zealand: Association for Computing Machinery,
2019, pp. 21–28. isbn: 9781450370448. doi: 10.1145/3368235.3368833.

[31] KubeAdmiral. KubeAdmiral: Centralized Management for Kubernetes Clusters. https:
//kubeadmiral.io. Accessed on: 15 April 2024. 2024.

[32] Kubernetes. Kubernetes: Production-Grade Container Orchestration. https : / /
kubernetes.io. Accessed on: 15 April 2024. 2024.

76

https://github.com/k8snetworkplumbingwg/multus-cni
https://doi.org/10.1007/978-3-030-15035-8_103
https://doi.org/10.1007/978-3-030-15035-8_103
https://github.com/karmada-io/karmada
https://github.com/karmada-io/karmada
https://github.com/JakobKe/kubeadm-scripts
https://github.com/JakobKe/oakestra-kubernetes-plugin-evaluation
https://github.com/JakobKe/oakestra-kubernetes-plugin-evaluation
https://doi.org/10.1109/ICETA61311.2023.10344182
https://doi.org/10.1109/ICETA61311.2023.10344182
https://doi.org/10.1145/3368235.3368833
https://kubeadmiral.io
https://kubeadmiral.io
https://kubernetes.io
https://kubernetes.io

Bibliography

[33] Kubernetes Community. KubeFed Github - Kubernetes Federation. https://github.
com/kubernetes-retired/kubefed. Accessed on: 15 April 2024. 2024.

[34] Kubernetes Federation. KubeFed: Kubernetes Cluster Federation. https : / /
kubernetes.io/docs/concepts/cluster- administration/federation/. Ac-
cessed on: 15 April 2024. 2024.

[35] I. Kumara, P. Mundt, K. Tokmakov, et al. “SODALITE@RT: Orchestrating Appli-
cations on Cloud-Edge Infrastructures.” In: Journal of Grid Computing 19 (2021),
p. 29. doi: 10.1007/s10723-021-09572-0.

[36] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han. “Service Mesh: Challenges,
State of the Art, and Future Research Opportunities.” In: 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE). 2019, pp. 122–1225. doi:
10.1109/SOSE.2019.00026.

[37] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri. “TOSCA Solves Big
Problems in the Cloud and Beyond!” In: IEEE Cloud Computing (2018), pp. 1–1.
doi: 10.1109/MCC.2018.111121612.

[38] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou. “A Survey on Edge Comput-
ing Systems and Tools.” In: Proceedings of the IEEE 107.8 (2019), pp. 1537–1562.
doi: 10.1109/JPROC.2019.2920341.

[39] G. Liu. KubeAdmiral: next-generation multi-cluster orchestration engine based on
Kubernetes. https://www.cncf.io/blog/2023/11/24/kubeadmiral- next-
generation-multi-cluster-orchestration-engine-based-on-kubernetes/.
Accessed on: 15 April 2024. 2023.

[40] M. Lu, L. Wang, Y. Wang, Z. Fan, Y. Feng, X. Liu, and X. Zhao. “An Orches-
tration Framework for a Global Multi-Cloud.” In: Proceedings of the 2018 Arti-
ficial Intelligence and Cloud Computing Conference. AICCC ’18. Tokyo, Japan: As-
sociation for Computing Machinery, 2018, pp. 58–62. isbn: 9781450366236. doi:
10.1145/3299819.3299823.

[41] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino. “Scalability and
Performance Evaluation of Edge Cloud Systems for Latency Constrained Applica-
tions.” In: 2018 IEEE/ACM Symposium on Edge Computing (SEC). 2018, pp. 286–299.
doi: 10.1109/SEC.2018.00028.

[42] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. “A survey on mobile edge
computing: The communication perspective.” In: 19.4 (2017), pp. 2322–2358.

[43] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. “A Survey on Mobile Edge
Computing: The Communication Perspective.” In: IEEE Communications Surveys
& Tutorials 19.4 (2017), pp. 2322–2358. doi: 10.1109/COMST.2017.2745201.

77

https://github.com/kubernetes-retired/kubefed
https://github.com/kubernetes-retired/kubefed
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://kubernetes.io/docs/concepts/cluster-administration/federation/
https://doi.org/10.1007/s10723-021-09572-0
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/MCC.2018.111121612
https://doi.org/10.1109/JPROC.2019.2920341
https://www.cncf.io/blog/2023/11/24/kubeadmiral-next-generation-multi-cluster-orchestration-engine-based-on-kubernetes/
https://www.cncf.io/blog/2023/11/24/kubeadmiral-next-generation-multi-cluster-orchestration-engine-based-on-kubernetes/
https://doi.org/10.1145/3299819.3299823
https://doi.org/10.1109/SEC.2018.00028
https://doi.org/10.1109/COMST.2017.2745201

Bibliography

[44] P. Mell and T. Grance. The NIST Definition of Cloud Computing. en. 2011-09-28 2011.
doi: https://doi.org/10.6028/NIST.SP.800-145.

[45] D. Milojicic. “The Edge-to-Cloud Continuum.” In: Computer 53.11 (Nov. 2020),
pp. 16–25. issn: 1558-0814. doi: 10.1109/MC.2020.3007297.

[46] M. Mohammed and A. Haqiq. “Dynamic resource allocation for service in mobile
cloud computing with Markov modulated arrivals.” In: International Journal
of Modeling, Simulation, and Scientific Computing 12.05 (2021), p. 2150038. doi:
10.1142/S1793962321500380.

[47] S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hästbacka, and D. Taibi. “Cloud
Continuum: The Definition.” In: IEEE Access 10 (2022), pp. 131876–131886. doi:
10.1109/ACCESS.2022.3229185.

[48] Oakestra. Oakestra Kubernetes Integration Plugin. https://github.com/oakestra/
plugin-kubernetes. Accessed: 2024-06-05. 2024.

[49] Oakestra. Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge
Computing. https://github.com/oakestra/oakestra. Accessed: 2024-06-11.
2024.

[50] J. Opara-Martins, R. Sahandi, and F. Tian. “Critical review of vendor lock-in and its
impact on adoption of cloud computing.” In: International Conference on Information
Society (i-Society 2014). 2014, pp. 92–97. doi: 10.1109/i-Society.2014.7009018.

[51] Open Cluster Management Authors. Open Cluster Management: A Modular Platform
for Kubernetes Multi-Cluster Orchestration. https://open-cluster-management.
io/. Accessed on: 15 April 2024. 2023.

[52] D. Petcu. “Multi-Cloud: expectations and current approaches.” In: Proceedings of
the 2013 International Workshop on Multi-Cloud Applications and Federated Clouds.
MultiCloud ’13. Prague, Czech Republic: Association for Computing Machinery,
2013, pp. 1–6. isbn: 9781450320504. doi: 10.1145/2462326.2462328.

[53] I. Petri, O. Rana, A. R. Zamani, and Y. Rezgui. “Edge-Cloud Orchestration:
Strategies for Service Placement and Enactment.” In: 2019 IEEE International
Conference on Cloud Engineering (IC2E). 2019, pp. 67–75. doi: 10.1109/IC2E.2019.
00020.

[54] I. Project. Istio. https://istio.io/. Accessed: 2024-05-20. 2024.

[55] K. Project. K3s. https://k3s.io/. Accessed: 2024-05-05. 2024.

[56] K. Project. KubeEdge. https://kubeedge.io/. Accessed: 2024-05-05. 2024.

[57] S. Project. Submariner. https://submariner.io/. Accessed: 2024-05-20. 2024.

78

https://doi.org/https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/MC.2020.3007297
https://doi.org/10.1142/S1793962321500380
https://doi.org/10.1109/ACCESS.2022.3229185
https://github.com/oakestra/plugin-kubernetes
https://github.com/oakestra/plugin-kubernetes
https://github.com/oakestra/oakestra
https://doi.org/10.1109/i-Society.2014.7009018
https://open-cluster-management.io/
https://open-cluster-management.io/
https://doi.org/10.1145/2462326.2462328
https://doi.org/10.1109/IC2E.2019.00020
https://doi.org/10.1109/IC2E.2019.00020
https://istio.io/
https://k3s.io/
https://kubeedge.io/
https://submariner.io/

Bibliography

[58] V. Prokhorenko and M. Ali Babar. “Architectural Resilience in Cloud, Fog and
Edge Systems: A Survey.” In: IEEE Access PP (Feb. 2020), pp. 1–1. doi: 10.1109/
ACCESS.2020.2971007.

[59] J. Qadir, B. Sainz-De-Abajo, A. Khan, B. Garcia-Zapirain, I. De La Torre-Diez,
and H. Mahmood. “Towards mobile edge computing: Taxonomy, challenges,
applications and future realms.” In: Ieee Access 8 (2020), pp. 189129–189162.

[60] Redhat. Multi-Cluster Kubernetes Architecture. Accessed on 2024-04-21. 2023.
url: https : / / www . redhat . com / architect / multi - cluster - kubernetes -
architecture (visited on 04/21/2024).

[61] D. Rosendo, A. Costan, P. Valduriez, and G. Antoniu. “Distributed intelligence
on the Edge-to-Cloud Continuum: A systematic literature review.” In: Journal
of Parallel and Distributed Computing 166 (2022), pp. 71–94. issn: 0743-7315. doi:
https://doi.org/10.1016/j.jpdc.2022.04.004.

[62] L. Shi, Z. Wang, and Y. Zeng. “Edge Network Security Risk Control Based on
Attack and Defense Map.” In: Journal of Circuits, Systems and Computers 30.03
(2021), p. 2150046. doi: 10.1142/S0218126621500468.

[63] T. Sigwele, Y. F. Hu, M. Ali, J. Hou, M. Susanto, and H. Fitriawan. “An Intelligent
Edge Computing Based Semantic Gateway for Healthcare Systems Interoperabil-
ity and Collaboration.” In: 2018 IEEE 6th International Conference on Future Internet
of Things and Cloud (FiCloud). 2018, pp. 370–376. doi: 10.1109/FiCloud.2018.
00060.

[64] Y. Singh, F. Kandah, and W. Zhang. “A secured cost-effective multi-cloud stor-
age in cloud computing.” In: 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). 2011, pp. 619–624. doi: 10.1109/INFCOMW.2011.
5928887.

[65] S. Svorobej, M. Bendechache, F. Griesinger, and J. Domaschka. “Orchestration
from the Cloud to the Edge.” In: The Cloud-to-Thing Continuum: Opportunities and
Challenges in Cloud, Fog and Edge Computing (2020), pp. 61–77.

[66] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. “On Multi-
Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud
Architecture and Orchestration.” In: 19.3 (2017), pp. 1657–1681. doi: 10.1109/
COMST.2017.2705720.

[67] M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth. “mck8s: An orchestration
platform for geo-distributed multi-cluster environments.” In: 2021 International
Conference on Computer Communications and Networks (ICCCN). 2021, pp. 1–10. doi:
10.1109/ICCCN52240.2021.9522318.

79

https://doi.org/10.1109/ACCESS.2020.2971007
https://doi.org/10.1109/ACCESS.2020.2971007
https://www.redhat.com/architect/multi-cluster-kubernetes-architecture
https://www.redhat.com/architect/multi-cluster-kubernetes-architecture
https://doi.org/https://doi.org/10.1016/j.jpdc.2022.04.004
https://doi.org/10.1142/S0218126621500468
https://doi.org/10.1109/FiCloud.2018.00060
https://doi.org/10.1109/FiCloud.2018.00060
https://doi.org/10.1109/INFCOMW.2011.5928887
https://doi.org/10.1109/INFCOMW.2011.5928887
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1109/ICCCN52240.2021.9522318

Bibliography

[68] J. S. Ward and A. Barker. A Cloud Computing Survey: Developments and Future
Trends in Infrastructure as a Service Computing. 2013. arXiv: 1306.1394 [cs.DC].

[69] S. B. Weinstein, Y.-Y. Lou, and T. R. Hsing. “Intelligent Network Edge with Dis-
tributed SDN for the Future 6G Network.” In: 2021 IEEE International Conference
on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). 2021,
pp. 261–265. doi: 10.1109/COMCAS52219.2021.9629105.

[70] Y. Wu. “Cloud-edge orchestration for the Internet of Things: Architecture and AI-
powered data processing.” In: IEEE Internet of Things Journal 8.16 (2020), pp. 12792–
12805.

[71] Z. G. Yang, L. L. Alejandro, C. I. Vergara, R. R. Maaliw, A. S. Alon, R. S. Evan-
gelista, R. P. L. Rivera, and R. C. D. Santos. “Multi-Active Multi-Datacenter
Distributed Database Architecture Design based-on Secondary Development
Zookeeper.” In: 2022 International Conference on Emerging Technologies in Elec-
tronics, Computing and Communication (ICETECC). 2022, pp. 1–6. doi: 10.1109/
ICETECC56662.2022.10069506.

[72] W. Zhang, A. Sharma, and T. Wood. “EdgeBalance: Model-Based Load Balancing
for Network Edge Data Planes.” In: 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20). USENIX Association, June 2020.

80

https://arxiv.org/abs/1306.1394
https://doi.org/10.1109/COMCAS52219.2021.9629105
https://doi.org/10.1109/ICETECC56662.2022.10069506
https://doi.org/10.1109/ICETECC56662.2022.10069506

Appendix

1 Reproducibility

The complete measurement took place in a set-up of 8 VMs. The VMs were wiped each
time to change the frameworks. The tests were carried out over the course of three
weeks.

1.1 Set Up

The setup of the cluster is already described in the evaluation chapter. The tools used
for this are KubeAdm with Calico, and this repository [27] was specifically used to
quickly set up the clusters. To initiate the cluster setup, execute commom.sh <ip> on
each node and master.sh <ip> on the master node. The master.sh script returns a
command to register the worker nodes with the master node.
After a Kubernetes cluster has been set up, a Multi-Cluster Tool, such as Oakestra,
Karmada, or OCM, must be installed. Additionally, a hub cluster is required for
Karmada and OCM. Installation instructions can be found in the respective wiki or the
README files of the plugins.
It is important that the Metrics Server and the Prometheus stack are deployed in the
child cluster. This is necessary because the same script, located in /metrics/metrics.py,
is used for all measurements in the overhead tests. This script requires access to the
Prometheus server, which can be made accessible via a kubectl port-forward.
Metrics.py always creates a results folder containing all measurements. The specific
measurements taken can be found within the script. This results folder can then be
saved elsewhere. For more information about the test setup, refer to chapter 4.

1.2 Execution

A public repository is required for the tests [28]. A brief explanation is provided for
each test, highlighting key considerations and aspects to monitor. The structure of the
repository is as follows:

• Tests: Contains all the scripts required to perform the tests.

81

Appendix

• Evaluation: Contains scripts for processing results and generating plots.

• Results: Stores all the raw test results.

• Metrics: Includes the scripts for performing the measurements.

Overhead Plugin

With the Overhead Plugin, no additional scripts are required. Only the plugins are
installed, and measurements are taken using the metrics.py script.
Once completed, the measurements are saved in the corresponding subfolder within
the results directory. These results are subsequently processed during the evaluation
phase.

Overhead Management

In Overhead Management, each framework has an associated script to initiate and
terminate deployments after a specified interval.
Several considerations must be addressed. Firstly, the configuration files for Karmada
and OCM must be in their respective directories. These files should be manually saved
in the same directory as the script. Furthermore, the root components of the clusters
must always be accessible. In the case of Karmada and OCM, a hub cluster must be
started separately. The IP of the respective root must only be stored with Oakestra. For
OCM and Karmada, it is already stored in the config.
It is also important that a service.yaml file is present in each folder; this must be
initiated in the respective cluster to ensure that the servers for the load test can be
addressed. Additionally, within the Oakestra Setup, it can be decided whether the
communication should occur via the Kubernetes or the Oakestra network. To specify
this, enter the appropriate URL in the script: either a suitable service IP from the
Oakestra network or the IP of the Kubernetes service.
The overall process is consistent: everything must be set up initially, and then the script
can be executed. Once all deployments are active, the metrics.py script can be run to
take the measurements.

Root Impact

With Root Impact, the various cluster setups must be initiated manually. Once a cluster
setup is ready, the script in the Root Impact folder should be executed. There are two
scripts in this folder: one for starting the workload and another for measuring CPU
and RAM usage. The workload script must be executed first, and the measurement

82

Appendix

script should be run only after active workloads. It is crucial to use the correct URL of
the Oakestra Root.

Deployment Time

In the deployment test, there is a dedicated folder for each framework. The scripts
within these folders execute the entire test logic. However, the respective script must be
executed separately for each framework. A CSV file containing all timestamps is saved
in the same folder.

1.3 Evaluation

All results are saved in the /results folder. The relevant results are further saved in
another folder, /evaluation. In this folder, the results are converted into graphics for
analysis.
The structure is consistent for each test. There is a subdivision for the respective focus of
the graphic. Each folder contains a script, calculate.py, consolidating the .csv files from
all frameworks and creating a new .csv with the relevant information. Additionally,
several scripts generate plots, each focusing on a different aspect.

83

Appendix

2 Detailed Architecture Kubernetes Deployments

84

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Motivation
	Contribution
	Thesis Structure

	Background
	Multi-Cluster Orchestration
	Architectural Approaches
	Versatility in Cluster Management
	Practical Applications and Use Cases

	Multi-Cluster Communication
	Container Networking
	Inter-Cluster Networking Solutions

	Edge Cloud Continuum
	Reference Architectures
	Paradigms
	Edge Cloud Communication
	Edge Cloud Orchestration

	Existing Orchestration Tools, Frameworks, and libraries
	Multi-Cluster Orchestration
	Cloud-To-Edge Orchestration

	Oakestra/Kubernetes Integration
	Requirements
	System Design
	Integration Approaches
	System Components

	Orchestration
	Oakestra Controller Manager
	Orchestration Flow
	State Handling
	Scheduling

	Communication
	Container Communication
	Communication between Components

	Set Up Kubernetes as Oakestra Cluster
	Prerequisites
	Set Up Oakestra
	Set Up Kubernetes
	Install Kubernetes Plugin

	Evaluation
	Experimental Set Up
	Evaluation Results
	Overhead Plugin
	Overhead Management
	Deployment Time
	Impact Oakestra Root

	Conclusion
	Limitations and Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix

