
Characterizing Distributed Mobile Augmented Reality
Applications at the Edge

Giovanni Bartolomeo
giovanni.bartolomeo@tum.de
Technical University of

Munich

Jacky Cao
jacky.cao@oulu.fi
University of Oulu

Xiang Su
xiang.su@ntnu.no

Norwegian University of
Science and Technology

Nitinder Mohan
mohan@in.tum.de

Technical University of
Munich

ABSTRACT
Mobile Augmented Reality (AR) is gaining traction as a compelling
application due to recent advancements in hardware and software.
Previous studies have suggested that distributing AR services on
an edge computing infrastructure can offer significant performance
benefits, especially for consolidating concurrent clients. In this
study, we shed light on several research challenges directly impact-
ing the effective integration of distributed AR and edge computing.
Specifically, we conduct extensive experiments by deploying our
distributed stream processing-based AR pipeline, scAtteR, on a
representative edge-cloud infrastructure managed by the Oakestra
framework. We uncover several unapparent challenges that inhibit
the effective marriage of distributed AR when deployed on edge
and demonstrate the potential improvements through scAtteR++.
We offer valuable insights and best practices to the growing AR re-
search community, specifically those interested in leveraging edge
and public cloud technologies for large-scale AR operations.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented real-
ity; • Software and its engineering → Distributed systems
organizing principles.

KEYWORDS
Augmented reality, Distributed stream processing, Edge computing,
Containers, Orchestration
ACM Reference Format:
Giovanni Bartolomeo, Jacky Cao, Xiang Su, and Nitinder Mohan. 2023.
Characterizing Distributed Mobile Augmented Reality Applications at the
Edge. In Companion of the 19th International Conference on emerging Net-
working EXperiments and Technologies (CoNEXT Companion ’23), Decem-
ber 5–8, 2023, Paris, France. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3624354.3630584

1 INTRODUCTION
The growing interests in mixed reality (XR), from both academia
and industry, such as Apple [9] and Meta [87], have paved the way
for new use cases leveraging immersive perception and interaction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT Companion ’23, December 5–8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0407-9/23/12. . . $15.00
https://doi.org/10.1145/3624354.3630584

platforms [69, 84]. Augmented reality (AR), as one of the promi-
nent pillars in XR, enables real-time interactive user experiences on
mobile devices by superimposing digital content onto physical en-
vironments [22, 44, 53, 89]. Recent advancements in hardware [91]
and software frameworks [4, 22, 23] further facilitate the wide-
spread adoption of AR across several computing platforms [74].

Most existing AR applications are monolithic – a client captures
a camera feed and offloads computation to a remote server [60, 61].
The remote execution is typically one-in-one-out, which takes AR
client frame inputs and returns results over a network [13, 65]. To
handle multiple clients, the backend must replicate or employ a
request queue. Even explorations that leverage edge computing to
improve performance are typically limited to single edge servers,
primarily due to strong dependencies between different pipeline
stages [77, 97]. Such solutions effectively demonstrate AR-edge ca-
pabilities by utilizing low-latency edge servers but face significant
challenges regarding scalability [43, 67] – limiting real-world adop-
tion.While existing research suggests that distributingAR functions
across multiple edge servers can improve performance [57, 68, 94],
practical demonstrations for multi-client use remain limited. Specif-
ically, solutions ignore effective ways to distribute and replicate
AR services while considering resource contention. Moreover, ap-
plying the benefits of these studies in practice is difficult due to
system complexity caused by heterogeneous clusters. Similarly,
the interplay of virtualization (e.g., containers) and orchestration
frameworks, like Kubernetes [10], to facilitate dynamic migrations
and scaling of AR services has remained largely unexplored to date.

Our study marks one of the first attempts to examine the op-
erational challenges of deploying distributed stream processing
(DSP) [16, 46, 52] based AR applications on edge-cloud infrastruc-
ture. We aim to provide valuable recommendations and insights for
AR developers and researchers. Our key contributions are:

1) We present scAtteR, an AR system composed of five con-
tainerized microservices (§3.1). Each service in the pipeline pro-
cesses an input feed as a stream and can be independently deployed.
We encapsulate real-world operations by employing a state-of-the-
art edge orchestration framework, Oakestra [12, 15], to manage
scAtteR deployment on our distributed edge-cloud infrastructure.
We conduct extensive experiments deploying different configura-
tions of scAtteR on local edge machines and public AWS cloud
(§4). Our analysis reveals that stateful AR components can sig-
nificantly limit pipeline scalability. Additionally, we demonstrate
that traditional resource consumption metrics used by most or-
chestration systems do not accurately reflect AR quality-of-service
(QoS) performance. Based on our findings, we highlight several
recommendations for more effective edge-AR operations.

https://doi.org/10.1145/3624354.3630584
https://doi.org/10.1145/3624354.3630584
https://doi.org/10.1145/3624354.3630584

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Giovanni Bartolomeo, Jacky Cao, Xiang Su, & Nitinder Mohan

2) We systematically demonstrate the performance potential of
our recommendations through the enhanced pipeline, scAtteR++
(§4). Our experiments show significant performance improvements
over scAtteR, i.e., ≈ 2.75× increase in concurrent client capacity
and ≈ 4× improved framerate. Distributed AR performs notably
better by introducing pipeline statelessness and effective request
queue management strategies.

We release both scAtteR and scAtteR++ as open-source [14].

2 RELATEDWORK
Scalable Augmented Reality. Scalability is crucial when deploying
AR on a large scale, as supporting concurrent users requires signifi-
cant resources and can strain existing server capacity. Researchers
have explored various approaches to address this challenge. Zhang
et al. [98] propose a framework that utilizes local caching to scale
AR as the number of users increases. By making dynamic edge
decisions based on expected workload and job execution location,
they optimize end-to-end latency. Jo et al. [48] enhance IoT objects
with a metadata layer accessed directly by AR clients, bypassing
the need for a server or gateway. This allows AR applications to
dynamically obtain the most relevant data, supporting scalable AR
experiences. Efforts have also been made to enhance computer vi-
sion performance in AR. Behzadan et al. [18] propose a scalable
algorithm that addresses incorrect object occlusion in dynamic and
real-time AR experiences. These studies collectively demonstrate
that scaling AR systems is feasible by optimizing the AR pipeline
and leveraging external resources for processing and connectivity.
Orchestrating AR Services.With the increasing interest in VR/AR
glasses, mobile AR, and the Metaverse [8, 26], computation offload-
ing of GPU-intensive tasks to edge servers results in several benefits.
Most notably, reduced end-user device energy consumption and
higher accuracy by utilizing larger ML models at minimal latency
cost [25, 75]. However, there is limited research on orchestrated
distributed AR systems. AR processing either relies on a single
monolithic service, which is difficult to provision and scale at the
edge [60], or on custom-built solutions, hard to distribute, monitor,
and manage. Heo et al. [43] propose a distributed XR system where
pipeline components are selectively offloaded. While their system
offers flexibility, it lacks considerations for automated deployment
and resource management. Ahn et al. [7] address energy efficiency
in mobile AR applications through edge-based service orchestration
schemes. They optimize the trade-off between energy consump-
tion, latency, and AR accuracy for multiple clients. However, their
evaluation does not encompass AR systems with multiple pipeline
components. Ren et al. [79] focus on WebAR apps and employ dis-
tributed edge system orchestration with 5G, using WebAR latency
and accuracy quality of service (QoS) metrics for service schedul-
ing and migration. Their validation is based on simulations rather
than real-world deployments. Wang et al. [88] present an optimal
placement algorithm that considers server placement and mainte-
nance criteria to determine offloading locations. In contrast, our
work investigates the practical challenges while orchestrating AR
pipeline services over a distributed edge infrastructure.

3 SYSTEM DESIGN & SETUP
In this section, we first present the design of our AR pipeline, fol-
lowed by our experiment methodology details.

primary

sift encoding lsh

matching1
Input

Augmented

2 3

5

4

Nearest Neighbour
Searching Layer

PCA & Fisher
Encoding Layer

Feature Detection &
Extraction Layer

Pre-Processing
Layer

Feature Matching &
Pose Estimate Layer

Output

Frames

Figure 1: High level overview of scAtteR pipeline.
3.1 scAtteR: A Distributed AR Pipeline
A typical AR application contains several components, e.g., frame
pre-processing, object detection, recognition, tracking, etc., decou-
plable as distinct pipeline microservices [17, 97]. However, design-
ing such applications is challenging due to intertwined ML models
across several core functions along with dependencies in communi-
cation semantics and context (i.e., state) of upstream function blocks.
For example, an object tracking service relies on consistent input
from object detection and recognition functions simultaneously
to follow objects across frames accurately (we explore these over-
heads later). Comparatively, a distributed AR pipeline is promising
since each complex function block can be scaled out (instead of
the entire application) to support concurrent client request load.
Past research has demonstrated that pipeline parallelism could pro-
vide high throughput, low latency, and increased portability in
distributed infrastructures [16, 46, 52].
Design & Implementation. We draw inspiration from existing
research to design and implement a representative DSP-based AR
application, scAtteR (see Figure 1). We use independent container-
ized microservices for each pipeline function block to enable low
overhead portability, isolation, and delivery of the services. This de-
sign approach is convenient for flexibly offloading in multi-tenant
edge environments [60]. scAtteR captures the core real-world AR
operation as it analyzes live video streams by (i) detecting and rec-
ognizing objects in-frame and (ii) tracking them across multiple
frames1. scAtteR enables flexibility as there are five containerized
functional blocks (shown as grey boxes) that can be independently
deployed and scaled across different hardware platforms. scAtteR’s
end-to-end operation is as follows. A client streams video from
a (live/pre-recorded) camera source and feeds the frame data to
the pipeline ingress – primary 1 . primary pre-processes frames
(grayscaling and dimension reduction) and transforms input video
to the requirements of the subsequent pipeline stages. The frame is
passed to sift 2 , which performs object detection using SIFT [62],
extracts recognized features from each frame as descriptors and for-
wards them to encoding 3 . encoding reduces/compresses feature
descriptors through Principal Component Analysis (PCA) encod-
ing and Fisher encoding [73]. lsh 4 maps Fisher vectors from
encoding into Local Sensitive Hashing (LSH) tables to find near-
est neighbors – enabling matching 5 to recognize object features
to reference images in the training dataset. Correlating feature-
matched results with the original from sift, matching also calcu-
lates object poses, allowing it to track objects across frames also
using sift’s output data. The processed frame containing bounding
boxes is delivered to the client, which renders it.

Note that all scAtteR services are GPU-dependent except for
primary. With GPU offloading being one of the driving factors for

1Complex AR applications extend this core functionality by co-locating virtual objects
within the physical scene [91].

Characterizing Distributed MAR Applications at the Edge CoNEXT Companion ’23, December 5–8, 2023, Paris, France

distributed AR [97], we offload object detection, pose estimation and
encoding workload as a pipelined replicable workflow [27, 61, 78].
The resulting architecture features non-linear component interac-
tions alternating stateless and stateful services, a common practice
in many AR systems [17, 43, 92]. sift is stateful as it stores data
in-memory for matching (till timeout). Intermediary results trans-
ferred between services include client ID, frame number, client’s IP
address and port number, and the current pipeline step – allowing
us to map multiple client inputs to the same service instance. To
ensure real-time operation, we (i) use UDP for end-to-end commu-
nication, and (ii) each service only processes one frame at a time to
avoid request queue build-up. Outstanding requests arriving at busy
services are dropped (we explore the impact of this in scAtteR++).

3.2 Experiment Setup
Testbed Infrastructure. Our setup uses two edge servers, Edge 1
(E1) and Edge 2 (E2), and a cloud GPU instance in AWS. E1 has an
Intel i9 CPU, two NVIDIA RTX 2080 GPUs, and 128 GB memory.
E2 is a more capable rack server with two AMD EPYC 7302 CPUs,
two NVIDIA A40 GPUs and 264 GB memory. We use local edge
machines since existing edge offerings from public cloud operators
do not include GPUs. We also virtualize our clients as containers
and deploy them on Intel NUC NUC6i5SYB machines, allowing us
to scale pipeline loads dynamically. The client NUCs are connected
directly to E1 via Ethernet with ≤ 1 ms RTT while E2 is accessible
to E1 via LAN in 2–4 hops (RTT ≈ 3 ms). The cloud machine has
four Intel Broadwell E5-2686 v4 vCPUs, NVIDIA Tesla V100 GPU,
64 GB memory, and has an RTT of ≈ 15 ms. Our infrastructure
resembles a typical edge-cloud continuum [34] with representative
local edge machine (E1), cellular-hosted edge (E2), and remote cloud.
Orchestration. We choose machines with different GPU architec-
tures (E1: GeForce RTX, E2: Ampere, C: Tesla) to accommodate
for expected heterogeneity in edge-cloud environments. While we
ensure service portability across machines by installing the same
CUDA drivers2, we still need to manually map container images
compiled for different architectures to different targets at runtime.
We automate this using an edge-native orchestrator, Oakestra [15],
for resource and service management. Oakestra is an open-source
framework [12] and allows us to flexibly deploy scAtteR on our
heterogeneous infrastructure by specifying high-level hardware
constraints and each service’s demands as service level agreement
(SLA). Compared to popular solutions such as Kubernetes [10],
KubeEdge [28], K3s [29], MicroK8s [21], Oakestra is significantly
more lightweight - consuming fewer resources for core orchestra-
tion tasks. We also exploit Oakestra for inter-service communica-
tion, load balancing requests across multiple service replicas (see
§4), and automatically re-deploying services upon failures.
Performance Metrics. A breadth of existing work evaluates the
quality of experience (QoE) performance of AR applications. QoE is
a highly subjective measure and requires extensive user studies [33,
81] andmodeling of user preferences [72, 93].While someworks use
implicit metrics, such as physiological biomarkers, to quantify AR
QoE [51], there is a need for objective measurements that quantify
and compare AR performance to deployed hardware operation.

2Binary compatibility is not always guaranteed and requires compiling the application
with the correct sm code version [71].

As such, we collect both hardware consumption (from Oakestra)
and end-to-end QoS (from scAtteR) statistics during experiments
for amore holistic analysis. To ensure repeatability across runs, each
client replays a pre-recorded 10 s, 30 FPS, 720p video captured from
a smartphone. The video depicts a workplace environment with
objects such as a monitor, keyboard, and table. Each experiment run
lasts five minutes, and intermediary files are flushed between runs.
We calculate the following metrics from experiment logs. (1) Frame
rate (FPS) denotes the number of successfully analyzed frames per
second by the AR pipeline. The metric encapsulates augmentation
stability and, therefore, directly correlates to end-user experience
[66]. (2) End-to-end (E2E) latency is the delta time between the input
and the final processed frame and denotes the processing latency
of the pipeline. To maintain smooth augmentation, the E2E latency
should ideally be smaller than the inter-frame time of input FPS
camera stream [96]. (3) Service latency is the processing time of
each pipeline service. Finally, (4) we measure memory, CPU, and
GPU usage. We normalize the CPU and GPU utilization against
the total number of available cores, which allows us to compare
performance over edge-cloud machines with different capacities.

4 EVALUATION
Edge Deployment.We establish a baseline performance of scAtteR
in our edge infrastructure in four deployment configurations: (a) C1
– all scAtteR services are deployed on E1, (b) C2 – all services are
deployed on E2, (c) C12 – primary and sift on E1 and encoding,
lsh, and matching on E2, i.e. pipeline order [𝐸1, 𝐸1, 𝐸2, 𝐸2, 𝐸2], and
(d) C21 – similar to C12 but with E1 and E2 services swapped, i.e.
[𝐸2, 𝐸2, 𝐸1, 𝐸1, 𝐸1]. Both C12 and C21 decouple the heaviest and the
only stateful service, sift, from the rest of the pipeline. Although,
service distribution comes at the cost of additional latency (we
explore the impact of variable network latency and packet loss in
A.1.1) Figure 2 shows service QoS and hardware utilization met-
rics with increasing client load. With a single client, scAtteR can
achieve ≥ 25 FPS (≈ 85% success rate – not shown) for all configura-
tions with E2E latency of ≈ 40 ms. Compared to the best performer,
C21, single machine deployments (C1 and C2) only observe minor
elevation in latency (≈ 2 ms and 4 ms respectively) but consume
considerably more CPU and GPU. We observe reduced CPU/GPU
utilization in C2 compared to C1, explained by the hardware capa-
bilities of the former, which lead to faster frame processing times.

C12 observed the highest service latency among all configura-
tions, ≈ 4 ms slower that E1. We also observe that scAtteR’s per-
formance degrades significantly with increasing concurrent clients.
After careful examination, we identify the bottleneck to be inter-
dependence between sift and matching. Such dependency loops
are known to amplify the backpressure phenomena in streaming
pipelines. Recall that sift, after receiving input from primary,
maintains the frame’s state until matching requests the extracted
features data for that frame. Therefore, sift observes 2× request
load compared to others, increasing significantly with increasing
clients. Consequently, matching starts discarding requests at in-
creasing loads since it is busy waiting for sift’s output (we see
frame success rate drop to 80% with four clients). Backpressure mit-
igation strategies, as discussed in [42], may not be effective, as the
bottleneck not only lies in the processing complexity of the service
but in the dependency loop – common practice in pipelined AR

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Giovanni Bartolomeo, Jacky Cao, Xiang Su, & Nitinder Mohan

0

10

20

30

F
P

S

Edge1 (E1)

Edge2 (E2)

[E1,E1,E2,E2,E2]

[E2,E2,E1,E1,E1]

0

2

4

6

8

M
em

.
(G

B
)

primary

sift

encoding

lsh

matching

0

15

30

45

60

E
2E

L
at

.
(m

s)

0

2

4

6

8

C
P

U
U

ti
l.

(%
)

1 2 3 4
Number of Clients

0

15

30

45

S
er

vi
ce

L
at

.
(m

s)

1 2 3 4
Number of Clients

0

10

20

30

G
P

U
U

ti
l.

(%
)

Figure 2: Baseline application performance on edge. FPS and
E2E latency over edge servers E1 and E2 for different place-
ment configurations ordered as [primary, sift, lsh, encoding,
matching] with the increasing concurrent clients. Resources
utilization of each service (stacked bars) ordering corre-
sponds with the same placement configuration.
systems [17, 43]. Interestingly, we also observe a counter-intuitive
trend of declining CPU/GPU utilization with increasing clients.
The high request drop due to congestion at earlier stages of the
pipeline leads to this behavior. The utilization decreases as ser-
vices stall and do not process any requests due to the existing
frame backlog. Contrarily, memory utilization increases several
folds. This is due to sift storing intermediate results in-memory
while it waits for matching’s request. The interaction also causes
side-effects if matching drops incoming frames since sift will
keep results in memory – which can limit its deployment over
memory-constrained edge hardware. We posit that the correlation
between application load and resource consumption is non-linear
and application/resource-specific. For this reason, it is hard to pre-
dict QoS and, consequently, QoE metrics from resource usage, as
also reported in [39, 85]. In the context of AR, application-awareness
and context-specific scheduling in containerized workloads is an
open research problem with limited attempts [82]. We also observe
higher jitter (Δ inter-frame receive time) with increasing clients due
to increased frame drops (see fig. 10 in Appendix A). Note that our
results are not influenced by design artifacts since such complex
interactions are commonplace in DSP pipelines [6, 31, 47, 95].

Insights and Recommendations:
(I) Hardware utilization alone does not reflect variations in end-
to-end application performance.
(II) Congestion in the inbound service interface should be limited,
e.g., by reducing internal service dependencies.

Service Scalability. A leading benefit of our orchestrated setup is
that it flexibly allows services to scale up/down to handle request
spikes without duplicating the pipeline. We now shed light on the
impact of such replications in three different configurations. First,
in [2,2,1,1,1] we replicate the ingress object detection services,
i.e. primary and sift, on E1 and E2. These services have a critical
impact on end-to-end performance, more specifically for sift (see
fig. 2), and may benefit from replication. In [1,2,1,1,2], we scale
sift and object tracking matching since they are the primary cause

0

10

20

30

F
P

S

[1, 2, 2, 1, 2]

[2, 2, 1, 1, 1]

[1, 2, 1, 1, 2]

0

1

2

3

4

5

M
em

.
(G

B
)

primary

sift

encoding

lsh

matching

0

15

30

45

60

75

E
2E

L
at

.
(m

s)

0

15

30

45

60

C
P

U
U

ti
l.

(%
)

1 2 3 4
Number of Clients

0

10

20

30

S
er

vi
ce

L
at

.
(m

s)

1 2 3 4
Number of Clients

0

5

10

15

G
P

U
U

ti
l.

(%
)

Figure 3: Impact of service scalability. QoS (FPS&E2E latency)
over E2 with another replica on E1 for ordering [primary,
sift, lsh, encoding, matching]. Resource utilization of each
service (stacked bars) follows the same scaling configuration.
of bottleneck in multi-client experiments. Finally, in [1,2,2,1,2],
we extend the previous configuration and replicate object recogni-
tion ingress, encoding. We rely on Oakestra’s (round-robin) load
balancing to distribute requests across multiple service replicas.
Note that frames balanced across sift instances remain tied to that
replica due to state restrictions. Figure 3 shows our results.

Scaling services do not always result in performance improve-
ments as configuration [2,2,1,1,1] observes 26% FPS reduction
compared to baseline. Increased input FPS causes this, thanks to
replicated ingress that congest the remaining single-instance ser-
vices. Note that Oakestra remains unaware of such application-
specific bottlenecks since it can only monitor underlying hardware
utilization, which does not increase proportionally. On the other
hand, the orchestrator observes ≈ 30% reduction in service latency,
which might convey that the application is performing better than
edge-only deployment. The results from [1,2,1,1,2] align with a
single instance baseline, showing 20% FPS degradation with con-
current clients. Similar to the [2,2,1,1,1], we observe increased
congestion at encoding in this configuration (see memory in fig. 3).
The cause, again, is state synchronization between sift and de-
pendent services. Specifically, due to state tie-ins, the benefits of
reducing pressure by balancing the traffic between primary-sift
(in [2,2,1,1,1]) and sift-matching (in [1,2,1,1,2]) is limited.
If a dependent service submits a request to a congested sift in-
stance, the request cannot be load-balanced and will timeout. On
the other hand, [1,2,2,1,2] is the best-performing configuration,
achieving 15% and 10% FPS improvement for two and three con-
current clients, as it limits the pipeline ingress load and distributes
requests across multiple replicas of detection, recognition and track-
ing services. Note that the improvement comes at the cost of ≈ 30%
end-to-end latency elevation due to load balancing overhead.

Insights and Recommendations:
(III) Interdependence on stateful services in DSP can severely
affect the scalability potential.
(IV) An application-aware orchestrator that incorporates internal
application metrics alongside hardware utilization may prove
more effective in the heterogeneous edge-cloud continuum.

Characterizing Distributed MAR Applications at the Edge CoNEXT Companion ’23, December 5–8, 2023, Paris, France

primary

sift

encoding

lsh

matching

0

2

4

6

M
em

.
(G

B
)

0

5

10

15

20

F
P

S

0

2

4

C
P

U
U

ti
l.

(%
)

1 2 3 4
Number of Clients

0

20

40

60

80

E
2E

L
at

.
(m

s)

1 2 3 4
Number of Clients

0

10

20

G
P

U
U

ti
l.

(%
)

Figure 4: Cloud-only deployment. Left shows scAtteR’s QoS
and right shows each service’s hardware utilization.
Cloud Deployment.We now provide a contrasting viewpoint in
Figure 4, which showcases scAtteR’s performance on the public
AWS cloud. We only showcase results from single VM instance
configuration since (i) the cloud instance’s capabilities far exceed
scAtteR’s operational requirements and (ii) we observed little-to-
no difference when the microservices were distributed over multi-
ple instances due to homogeneous hardware interconnected by a
consistent low-latency network.

Recall that the major differences between the edge and cloud
setups are (i) ≈ 15 ms latency between clients and scAtteR ingress
and (ii) virtualized hardware. Our cloud deployment achieves a
lower 18.2 FPS (median), compared to 25 FPS in single edge config-
urations (C1 or C2), along with a lower frame success rate (64%).
Note that the performance decrease is not due to hardware bot-
tlenecks since scAtteR uses less than 5%, 25%, and 2% CPU, GPU,
and memory, respectively. One reason could be that the virtualized
application is not optimized for the Tesla GPU architecture and
affects performance. Another reason could be the increased net-
work latency between the clients and the cloud, delaying overall
processing time (evident in fig. 4). We explore the impact of latency
further through hybrid edge-cloud deployment, with primary on
E1 and the rest of the pipeline in the cloud (see fig. 11 in Appendix).
We observe ≈ 2× increase in latency compared to a cloud-only with
significant application performance degradation. While our prelimi-
nary examination reveals frame drops over the public Internet path
as the primary contributor, we leave the thorough investigation to
future work. In cloud-only deployment, the end-to-end latency sees
a noticeable increase of ≈ 20 ms compared to the edge, correspond-
ing to increased client-ingress access latency. We also observe a
slightly higher jitter in received frames (compared to C1 and C2).
A closer investigation reveals the cause to be latency fluctuations
between client(s) and the cloud machine.

Insights and Recommendations:
(V) While virtualization can help with portability, QoS can vary
based on underlying GPU/CPU architecture.
(VI) Network latency and jitter affect real-time AR operation and
require proactive measures within the application.

5 scAtteR++
Our experiments with scAtteR uncover design and implemen-

tation factors that can hinder the wide-scale deployment of multi-
client AR. We now present scAtteR++ to elucidate the performance
improvement possible through our recommendations (see fig. 5).

primary sift encoding lsh matching

Queue Sidecar

Threshold gRPC

:=compute(f)

Pre-Proc. Feat. Det. PCA NN Match

Figure 5: scAtteR++ pipeline design.

We strategically redesign sift to operate statelessly to remove the
dependency on matching. We encode the frame’s state and relevant
data within the frame itself, packaging the required SIFT data at
the cost of increasing the output frame size from ≈ 180 KB to ≈ 480
KB. Stateless applications typically use the data stores or caches
of the current application and not persistent storage to decouple
state [35]. This technique is found in other services, such as net-
working for stateless network functionality where networks can
be scaled efficiently [50]. Our approach to creating a statelessness
pipeline is comparable by storing the state data in the forwarded
data frames between services, avoiding unnecessary writing on
storage. This allows us to create a more agile pipeline supporting
easier application scaling, independent service deployment, and
better fault tolerance [36]. Regarding recommendations (II) and
(VI), we introduce a sidecar component attached to each service’s
ingress. This empowers scAtteR++ to efficiently handle concurrent
processing requests that surpass a service’s processing rate. The
sidecar performs queuing and filtering of the incoming requests
and makes a gRPC call to the attached service for processing out-
standing frames in filtered FIFO order. The sidecar also collects
metrics (i.e., queueing and processing time or threshold ratio) that
are attached to the data’s state. The sidecar design is a well-known
pattern in the microservices community [20] and is used in several
projects [1–3]. In recent work, Lee et al. [56] propose a similar
solution tailoring a sidecar process for an in-network acceleration
of ML workload at the edge. This work is tightly coupled with Istio
and Envoy, which can limit the solution’s applicability in highly
distributed or constrained environments due to high overhead [99].
The solution proposed in this work is built specifically for data
streaming applications and uses Oakestra’s semantic addressing to
achieve transparent load balancing with minimal overhead [15].

We re-conduct our edge and scalability experimentswith scAtteR++.
We set the timing threshold to 100 ms, in line with the maximum tol-
erable latency in XR applications [43, 60, 67]. Figure 6 demonstrates
significant performance improvements with scAtteR++ compared
to scAtteR in all edge deployment configurations. In single client
configurations scAtteR++ achieves a 9% FPS increase (+17.6% suc-
cess rate), while with multiple concurrent clients, we record a sub-
stantial 2.5× frame rate increase. Specifically, scAtteR++ consis-
tently maintains 12 FPS with four clients (with C12 achieving ≈
20 FPS) where scAtteR struggled to maintain > 5 FPS (see fig. 2).
The sidecar queue is crucial in this improvement as it buffers frame
requests during service lag. Although scAtteR++ incurs slightly
higher per service latency, most evident in primary, it effectively re-
duces request drops and improves resource utilization, which scales
proportionally with client load. Note that the performance decrease
with increasing load in scAtteR++ is due to throttling (see GPU
utilization) instead of request drops in scAtteR. While scAtteR

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Giovanni Bartolomeo, Jacky Cao, Xiang Su, & Nitinder Mohan

1 2 3 4
Number of Clients

0

10

20

30

F
P

S

Edge1 (E1)

Edge2 (E2)

[E1,E1,E2,E2,E2]

[E2,E2,E1,E1,E1]

1 2 3 4
Number of Clients

0

10

20

30

40

S
er

vi
ce

L
at

.
(m

s)

primary sift encoding lsh matching

1 2 3 4
Number of Clients

0

7

14

21

28

M
em

.
(G

B
)

1 2 3 4
Number of Clients

0

20

40

60

80

G
P

U
U

ti
l.

(%
)

Figure 6: Baseline performance deployed on the edge using the sidecar component. Experi-
ment methodology corresponds to that shown in fig. 2.

0 10 20 30
FPS

1
2
3
4
5
6
7
8
9

10

N
u

m
b

er
of

C
lie

nt
s

[1, 2, 2, 1, 2] [1, 2, 1, 1, 2] [1, 3, 2, 1, 3]

Figure 7: FPS when increasing
scaled services and clients.

0 20 40 60 80 100

Experiment Time (%)

60
120
180
240

F
P

S

primary sift encoding lsh matching

1 2 3 4 5 6 7 8 9 10
Concurrent Clients

0

0.5

1

D
ro

p
R

at
io

C
lie

nt
D

ep
lo

y

Figure 8: Sidecar analytics correlating each scAtteR++ ser-
vice’s FPS in fig. 7 (line denotes median) to queued request
drops with increasing clients at fixed one-minute intervals.
could not combat this by scaling out due to stateful sift restric-
tions, scAtteR++ shows clear benefits with replications. As shown
in fig. 7, scAtteR++ achieves a 2.8× improvement by achieving a
similar framerate with eight clients compared to what scAtteR
achieved with four on the same cluster.

Figure 8 presents the correlation between ingress FPS per ser-
vice, the number of clients (from 1 to 10), and the drop rate of
the queue enforced to maintain the latency threshold. We observe
how the maximum ingress FPS starts plateauing at about 4 clients
(≈ 90 ingress FPS) for the latest stages of the pipeline with drop
rate increasing at matching starting from 3 clients. The delay in-
troduced by the previous stages of the pipeline and the growing
frames queue forces the threshold mechanism to drop 10% at first,
then up to 40% of the frames. Sift’s drop rate increases up to 50% in
the range 8 − 10 clients, halving the ingress FPS of the latest stages
of scAtteR++. Primary’s pre-processing reached a max through-
put of 240FPS, disregarding ingress UDP datagrams afterward. The
high drop ratio depicts the saturation of the pipeline max through-
put with the available hardware, the build-up of the backpressure,
and the need for further scaling out horizontally or vertically. We
argue, however, that vertical scalability and model optimization
help shift the saturation point of the model to a higher number of
clients but require separate considerations. The former approach
must deal with resource contention, which is critical especially
for GPUs [45, 90], while the latter helps improve inference speed
with faster models (e.g., substituting SIFT with [59]) but without a
horizontally scalable design the application will incur in the same
issues discussed in §4 but delayed to a higher number of clients.

6 CONCLUSION & FUTUREWORK
In this work, we investigated several challenges while deploying

a distributed AR application, scAtteR, on a heterogeneous edge-
cloud infrastructure. Our work builds upon the commonalities of
the architectural design from related edge/cloud AR research to (i)
provide the research community with a demonstrable prototype of

distributed AR application released as an open-source project [14],
(ii) highlight potential (non-apparent) bottlenecks in such designs
and the trade-offs between flexibility and performance, and (iii)
uncover future research directions and common approaches that
can be applied from related works to this field. As such, our study
serves as a foundation for further investigations, encouraging the
integration of the following solutions.
Application-Aware Orchestration. Our study sheds light on the
challenges hindering real-world deployments of XR applications.
Most notably, we discover that application-level QoS is not pro-
portionally reflected in hardware-level utilization and is highly
dependent on implementation. This finding has significant implica-
tions since orchestration frameworks are oblivious to the internal
operations of virtualized services and only rely on hardware-level
metrics [11, 24, 55, 83]. Recent research from related fields also con-
ceptually echoes our intuitions [37, 56, 63]. Our recommendations,
(I) and (IV), propose the need for application-aware orchestrators
that simultaneously correlate application and hardware metrics for
optimizations. One potential approach is extending the sidecar in
scAtteR++ to bridge across the virtualization boundary, providing
predefined hooks for the orchestrator to access internal application
metrics. However, this approach requires thorough investigation
to address potential security concerns and vulnerabilities.
Real-World Relevance. We made several design decisions with
scAtteR that may/may not encompass the state-of-the-art in AR
development, given the rapidly growing scope of the field. Industry-
driven XR platforms, such as [41, 70] allow the streaming of AR
applications from the Cloud. However, to exploit the low latency
of the edge environments, the user’s application design requires
thorough decomposition and flexibility considerations. There is a
concerted effort from the community to optimize software devel-
opment kits [4, 23] to enable AR functionality across platforms,
including OSes [30, 38, 54], web browsers [49, 74], and more. Re-
cent advancements explore model accuracy enhancement [86], foot-
print [77] reduction, as well as network performance improvements
through 5G [40, 68], transport [5], and application layer proto-
cols [19], which this study does not address. Additionally, the hard-
ware configurations used in this paper can be extended further to
explore the effects of vertical scalability and resource contention.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and the shepherd for their
comments and insights during the review process. This work was
partly supported by the Federal Ministry of Education and Research
of Germany (BMBF) project 6G-Life (16KISK002), the EUHealth and
Digital Executive Agency (HADEA) project EDGELESS (101092950),
and Nordic University Cooperation on Edge Intelligence (168043).

Characterizing Distributed MAR Applications at the Edge CoNEXT Companion ’23, December 5–8, 2023, Paris, France

REFERENCES
[1] 2022. Envoy. Web document. https://www.envoyproxy.io/
[2] 2022. Istio. Web document. https://istio.io/
[3] 2022. Linkerd. Web document. https://linkerd.io/
[4] A-Frame. 2023. A-Frame: Web Framework for Building Virtual Reality Experi-

ences. Online. https://aframe.io/
[5] Maha Abdallah, Carsten Griwodz, Kuan-Ta Chen, Gwendal Simon, Pin-Chun

Wang, and Cheng-Hsin Hsu. 2018. Delay-Sensitive Video Computing in the
Cloud: A Survey. ACM Trans. Multimedia Comput. Commun. Appl. 14, 3s, Article
54 (jun 2018), 29 pages. https://doi.org/10.1145/3212804

[6] Neil Agarwal and Ravi Netravali. 2023. Boggart: Towards General-Purpose
Acceleration of Retrospective Video Analytics. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 933–951. https://www.usenix.org/conference/nsdi23/presentation/
agarwal-neil

[7] Jaewon Ahn, Joohyung Lee, Dusit Niyato, and Hong-Shik Park. 2020. Novel
QoS-Guaranteed Orchestration Scheme for Energy-Efficient Mobile Augmented
Reality Applications in Multi-Access Edge Computing. IEEE Transactions on
Vehicular Technology 69, 11 (2020), 13631–13645. https://doi.org/10.1109/TVT.
2020.3020982

[8] Tiago Andrade and Daniel Bastos. 2019. Extended reality in iot scenarios: Con-
cepts, applications and future trends. In 2019 5th Experiment International Con-
ference (exp. at’19). IEEE, 107–112.

[9] Apple Inc. Accessed 2023. Apple Vision Pro. https://www.apple.com/apple-
vision-pro/.

[10] The Kubernetes Authors. 2023. Kubernetes. https://kubernetes.io/.
[11] The Kubernetes Authors. 2023. Scheduling and Eviction. https://kubernetes.io/

docs/concepts/scheduling-eviction/.
[12] The Oakestra Authors. 2023. Oakestra: An Orchestration Framework for Edge

Computing. https://www.oakestra.io/
[13] Haythem Bahri, David Krčmařík, and Jan Kočí. 2019. Accurate Object Detection

System on HoloLens Using YOLO Algorithm. In 2019 International Conference
on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). 219–224.
https://doi.org/10.1109/ICCAIRO47923.2019.00042

[14] Giovanni Bartolomeo, Jacky Cao, Xiang Su, and Mohan Nitinder. 2023. Artifact -
Characterizing Distributed Mobile Augmented Reality Applications at the Edge.
https://github.com/cao-jacky/characterizing_edge_mar

[15] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Haluszczynski, Nitin-
der Mohan, and Jörg Ott. 2023. Oakestra: A Lightweight Hierarchical Or-
chestration Framework for Edge Computing. In 2023 USENIX Annual Techni-
cal Conference (USENIX ATC 23). USENIX Association, Boston, MA. https:
//www.usenix.org/conference/atc23/presentation/bartolomeo

[16] Pablo Basanta-Val, Norberto Fernández-García, Luis Sánchez-Fernández, and
Jesus Arias-Fisteus. 2017. Patterns for Distributed Real-Time Stream Processing.
IEEE Transactions on Parallel and Distributed Systems 28, 11 (2017), 3243–3257.
https://doi.org/10.1109/TPDS.2017.2716929

[17] Simon Bäurle and Nitinder Mohan. 2022. ComB: A Flexible, Application-
Oriented Benchmark for Edge Computing. In Proceedings of the 5th Interna-
tional Workshop on Edge Systems, Analytics and Networking (Rennes, France)
(EdgeSys ’22). Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3517206.3526269

[18] Amir H. Behzadan and Vineet R. Kamat. 2010. Scalable Algorithm
for Resolving Incorrect Occlusion in Dynamic Augmented Reality Engi-
neering Environments. Computer-Aided Civil and Infrastructure Engineer-
ing 25, 1 (2010), 3–19. https://doi.org/10.1111/j.1467-8667.2009.00601.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8667.2009.00601.x

[19] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris Chatzopoulos, and Pan Hui.
2017. Future Networking Challenges: The Case of Mobile Augmented Reality.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 1796–1807. https://doi.org/10.1109/ICDCS.2017.48

[20] Brendan Burns and David Oppenheimer. 2016. Design patterns for container-
based distributed systems. In 8th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 16).

[21] Canonical. 2023. MicroK8s - ZERO-OPS Kubernetes for developers, edge And
IoT: Microk8s. https://microk8s.io/

[22] Jacky Cao, Kit-Yung Lam, Lik-Hang Lee, Xiaoli Liu, Pan Hui, and Xiang Su. 2023.
Mobile Augmented Reality: User Interfaces, Frameworks, and Intelligence. ACM
Comput. Surv. 55, 9, Article 189 (jan 2023), 36 pages. https://doi.org/10.1145/
3557999

[23] CareAR. 2023. CraftAR: Augmented Reality for the Future. Online. https:
//carear.com/craftar/

[24] Carmen Carrión. 2022. Kubernetes Scheduling: Taxonomy, Ongoing Issues
and Challenges. ACM Comput. Surv. 55, 7, Article 138 (dec 2022), 37 pages.
https://doi.org/10.1145/3539606

[25] Koyela Chakrabarti. 2021. Deep learning based offloading for mobile augmented
reality application in 6G. Computers and Electrical Engineering 95 (2021), 107381.

[26] Luyi Chang, Zhe Zhang, Pei Li, Shan Xi, Wei Guo, Yukang Shen, Zehui Xiong,
Jiawen Kang, Dusit Niyato, Xiuquan Qiao, et al. 2022. 6G-enabled edge AI for

Metaverse: Challenges, methods, and future research directions. Journal of
Communications and Information Networks 7, 2 (2022), 107–121.

[27] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, et al. 2016. Benchmarking streaming computation engines: Storm, flink
and spark streaming. In 2016 IEEE international parallel and distributed processing
symposium workshops (IPDPSW). IEEE, 1789–1792.

[28] CNCF. 2017. KubeEdge. https://github.com/kubeedge/kubeedge. Retrieved May
24, 2022 from https://kubeedge.io/en/

[29] CNCF. 2019. Lightweight Kubernetes | K3S. https://k3s.io. Retrieved May 24,
2022 from https://k3s.io

[30] Microsoft Corporation. 2023. Microsoft HoloLens. Web document. https://www.
microsoft.com/en-us/hololens Retrieved from https://www.microsoft.com/en-
us/hololens.

[31] Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, and
Jorg Ott. 2022. Nimbus: Towards Latency-Energy Efficient Task Offloading
for AR Services. IEEE Transactions on Cloud Computing (2022), 1–1. https:
//doi.org/10.1109/TCC.2022.3146615

[32] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jörg
Ott, and Jussi Kangasharju. 2021. Cloudy with a Chance of Short RTTs: Analyz-
ing Cloud Connectivity in the Internet. In Proceedings of the 21st ACM Internet
Measurement Conference (Virtual Event) (IMC ’21). Association for Computing
Machinery, New York, NY, USA, 62–79. https://doi.org/10.1145/3487552.3487854

[33] Elijs Dima, Kjell Brunnström, Mårten Sjöström, Mattias Andersson, Joakim
Edlund, Mathias Johanson, and Tahir Qureshi. 2020. Joint effects of depth-
aiding augmentations and viewing positions on the quality of experience in
augmented telepresence. Quality and User Experience 5, 1 (10 Feb 2020), 2.
https://doi.org/10.1007/s41233-020-0031-7

[34] P. J. Escamilla-Ambrosio, A. Rodríguez-Mota, E. Aguirre-Anaya, R. Acosta-
Bermejo, and M. Salinas-Rosales. 2018. Distributing Computing in the Internet
of Things: Cloud, Fog and Edge Computing Overview. Springer International
Publishing, Cham, 87–115. https://doi.org/10.1007/978-3-319-64063-1_4

[35] I. Farris, T. Taleb, H. Flinck, and A. Iera. 2018. Providing ultra-short latency
to user-centric 5G applications at the mobile network edge. Transactions on
Emerging Telecommunications Technologies 29, 4 (2018), e3169. https://doi.org/
10.1002/ett.3169 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3169
e3169 ett.3169.

[36] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud computing patterns: fundamentals to design, build, and
manage cloud applications. Springer.

[37] Xenofon Foukas and Bozidar Radunovic. 2021. Concordia: Teaching the 5G VRAN
to Share Compute. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference
(Virtual Event, USA) (SIGCOMM ’21). Association for Computing Machinery,
New York, NY, USA, 580–596. https://doi.org/10.1145/3452296.3472894

[38] Victor Fragoso, Steffen Gauglitz, Shane Zamora, Jim Kleban, and Matthew Turk.
2011. TranslatAR: A mobile augmented reality translator. In 2011 IEEE Workshop
on Applications of Computer Vision (WACV). 497–502. https://doi.org/10.1109/
WACV.2011.5711545

[39] Ziyan Fu, Ju Ren, Deyu Zhang, Yuezhi Zhou, and Yaoxue Zhang. 2022. Kalmia: A
heterogeneous QoS-aware scheduling framework for DNN tasks on edge servers.
In IEEE INFOCOM 2022-IEEE Conference on Computer Communications. IEEE,
780–789.

[40] Moinak Ghoshal, Pranab Dash, Zhaoning Kong, Qiang Xu, Y Charlie Hu, Dim-
itrios Koutsonikolas, and Yuanjie Li. 2022. Can 5G mmWave Support Multi-user
AR?. In Passive and Active Measurement: 23rd International Conference, PAM 2022,
Virtual Event, March 28–30, 2022, Proceedings. Springer, 180–196.

[41] Google. 2023. Immersive Stream AR. Web document. https://cloud.google.com/
immersive-stream/xr

[42] Muhammad Hanif, Hyeongdeok Yoon, and Choonhwa Lee. 2020. A Backpressure
Mitigation Scheme inDistributed StreamProcessing Engines. In 2020 International
Conference on Information Networking (ICOIN). IEEE, 713–716.

[43] Jin Heo, Ketan Bhardwaj, and Ada Gavrilovska. 2023. FleXR: A System Enabling
Flexibly Distributed Extended Reality. In Proceedings of the 14th Conference on
ACM Multimedia Systems (Vancouver, BC, Canada) (MMSys ’23). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3587819.3590966

[44] Jaylin Herskovitz, Jason Wu, Samuel White, Amy Pavel, Gabriel Reyes, Anhong
Guo, and Jeffrey P. Bigham. 2020. MakingMobile Augmented Reality Applications
Accessible. In Proceedings of the 22nd International ACM SIGACCESS Conference
on Computers and Accessibility (Virtual Event, Greece) (ASSETS ’20). Association
for Computing Machinery, New York, NY, USA, Article 3, 14 pages. https:
//doi.org/10.1145/3373625.3417006

[45] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and KyoungSoo
Park. 2021. Elastic resource sharing for distributed deep learning. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21). 721–739.

[46] Anand Jayarajan, Kimberly Hau, Andrew Goodwin, and Gennady Pekhimenko.
2021. LifeStream: A High-Performance Stream Processing Engine for Periodic
Streams. In Proceedings of the 26th ACM International Conference on Architectural

https://www.envoyproxy.io/
https://istio.io/
https://linkerd.io/
https://aframe.io/
https://doi.org/10.1145/3212804
https://www.usenix.org/conference/nsdi23/presentation/agarwal-neil
https://www.usenix.org/conference/nsdi23/presentation/agarwal-neil
https://doi.org/10.1109/TVT.2020.3020982
https://doi.org/10.1109/TVT.2020.3020982
https://www.apple.com/apple-vision-pro/
https://www.apple.com/apple-vision-pro/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://www.oakestra.io/
https://doi.org/10.1109/ICCAIRO47923.2019.00042
https://github.com/cao-jacky/characterizing_edge_mar
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://doi.org/10.1109/TPDS.2017.2716929
https://doi.org/10.1145/3517206.3526269
https://doi.org/10.1111/j.1467-8667.2009.00601.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8667.2009.00601.x
https://doi.org/10.1109/ICDCS.2017.48
https://microk8s.io/
https://doi.org/10.1145/3557999
https://doi.org/10.1145/3557999
https://carear.com/craftar/
https://carear.com/craftar/
https://doi.org/10.1145/3539606
https://github.com/kubeedge/kubeedge
https://kubeedge.io/en/
https://k3s.io
https://k3s.io
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1145/3487552.3487854
https://doi.org/10.1007/s41233-020-0031-7
https://doi.org/10.1007/978-3-319-64063-1_4
https://doi.org/10.1002/ett.3169
https://doi.org/10.1002/ett.3169
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3169
https://doi.org/10.1145/3452296.3472894
https://doi.org/10.1109/WACV.2011.5711545
https://doi.org/10.1109/WACV.2011.5711545
https://cloud.google.com/immersive-stream/xr
https://cloud.google.com/immersive-stream/xr
https://doi.org/10.1145/3587819.3590966
https://doi.org/10.1145/3587819.3590966
https://doi.org/10.1145/3373625.3417006
https://doi.org/10.1145/3373625.3417006

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Giovanni Bartolomeo, Jacky Cao, Xiang Su, & Nitinder Mohan

Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA, 107–122.
https://doi.org/10.1145/3445814.3446725

[47] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: Scalable Adaptation of Video Analytics. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 253–266. https://doi.org/10.1145/3230543.3230574

[48] Dongsik Jo and Gerard Jounghyun Kim. 2016. ARIoT: scalable augmented reality
framework for interacting with Internet of Things appliances everywhere. IEEE
Transactions on Consumer Electronics 62, 3 (2016), 334–340. https://doi.org/10.
1109/TCE.2016.7613201

[49] Brandon Jones, Manish Goregaokar, and Rik Cabanier. 2023. WebXR Device API.
Web document. https://www.w3.org/TR/webxr/

[50] Murad Kablan, Blake Caldwell, Richard Han, Hani Jamjoom, and Eric Keller. 2015.
Stateless Network Functions. In Proceedings of the 2015 ACM SIGCOMMWorkshop
on Hot Topics in Middleboxes and Network Function Virtualization (London, United
Kingdom) (HotMiddlebox ’15). Association for Computing Machinery, New York,
NY, USA, 49–54. https://doi.org/10.1145/2785989.2785993

[51] Conor Keighrey, Ronan Flynn, Siobhan Murray, and Niall Murray. 2021. A
Physiology-Based QoE Comparison of Interactive Augmented Reality, Virtual
Reality and Tablet-Based Applications. IEEE Transactions on Multimedia 23 (2021),
333–341. https://doi.org/10.1109/TMM.2020.2982046

[52] Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen Zhang, Anirud-
dha Gokhale, Yogesh Barve, Anirban Bhattacharjee, and Xenofon Koutsoukos.
2019. Linearize, Predict and Place: Minimizing the Makespan for Edge-Based
Stream Processing of Directed Acyclic Graphs. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing (Arlington, Virginia) (SEC ’19). Association for
Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/
3318216.3363315

[53] Iris Kico and Fotis Liarokapis. 2019. A Mobile Augmented Reality Interface for
Teaching Folk Dances. In Proceedings of the 25th ACM Symposium on Virtual
Reality Software and Technology (Parramatta, NSW, Australia) (VRST ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 47, 2 pages.
https://doi.org/10.1145/3359996.3364752

[54] Sung Lae Kim, Hae Jung Suk, Jeong Hwa Kang, Jun Mo Jung, Teemu H. Laine,
and Joonas Westlin. 2014. Using Unity 3D to facilitate mobile augmented reality
game development. In 2014 IEEE World Forum on Internet of Things (WF-IoT).
21–26. https://doi.org/10.1109/WF-IoT.2014.6803110

[55] Kubernetes. 2023. Controller Manager. Online. https://kubernetes.io/docs/
reference/command-line-tools-reference/kube-controller-manager/

[56] HyunJong Lee, Shadi Noghabi, Brian Noble, Matthew Furlong, and Landon P Cox.
2022. BumbleBee: Application-aware adaptation for edge-cloud orchestration. In
2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). IEEE, 122–135.

[57] Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang, Dianlei Xu, Zijun Lin,
Abhishek Kumar, Carlos Bermejo, and PanHui. 2021. All one needs to know about
metaverse: A complete survey on technological singularity, virtual ecosystem,
and research agenda. arXiv preprint arXiv:2110.05352 (2021).

[58] Linux. 2023. Traffic control manual. https://man7.org/linux/man-pages/man8/
tc.8.html

[59] Bingqiang Liu, Zehua Yin, Xvpeng Zhang, Yi Zhan, Xiaofeng Hu, Guoyi Yu,
Yuanjin Zheng, Chao Wang, and Xuecheng Zou. 2022. An Energy-Efficient SIFT
Based Feature Extraction Accelerator for High Frame-Rate Video Applications.
IEEE Transactions on Circuits and Systems I: Regular Papers 69, 12 (2022), 4930–
4943.

[60] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-Time
Object Detection for Mobile Augmented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking (Los Cabos, Mexico) (MobiCom
’19). Association for Computing Machinery, New York, NY, USA, Article 25,
16 pages. https://doi.org/10.1145/3300061.3300116

[61] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong Zhang, Lin-
tao Zhang, andMarco Gruteser. 2018. Cutting the Cord: Designing a High-Quality
Untethered VR System with Low Latency Remote Rendering. In Proceedings of
the 16th Annual International Conference on Mobile Systems, Applications, and
Services (Munich, Germany) (MobiSys ’18). Association for Computing Machinery,
New York, NY, USA, 68–80. https://doi.org/10.1145/3210240.3210313

[62] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60 (2004), 91–110.

[63] Ashraf Mahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 285–301. https://www.usenix.org/conference/
atc21/presentation/mahgoub

[64] Roberto Maldonado, Anders Karstensen, Guillermo Pocovi, Ali A Esswie, Claudio
Rosa, Olli Alanen, Mika Kasslin, and Troels Kolding. 2021. ComparingWi-Fi 6 and
5G downlink performance for industrial IoT. IEEE Access 9 (2021), 86928–86937.

[65] Ana Malta, Mateus Mendes, and Torres Farinha. 2021. Augmented Reality
Maintenance Assistant Using YOLOv5. Applied Sciences 11, 11 (2021). https:

//doi.org/10.3390/app11114758
[66] Microsoft. 2023. App Quality Criteria - mixed reality. https:

//learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-
concepts/app-quality-criteria-overview

[67] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.
In Proceedings of the 19th ACMWorkshop on Hot Topics in Networks (Virtual Event,
USA) (HotNets ’20). Association for Computing Machinery, New York, NY, USA,
182–189. https://doi.org/10.1145/3422604.3425943

[68] Diego González Morín, Pablo Pérez, and Ana García Armada. 2022. Toward
the Distributed Implementation of Immersive Augmented Reality Architectures
on 5G Networks. IEEE Communications Magazine 60, 2 (2022), 46–52. https:
//doi.org/10.1109/MCOM.001.2100225

[69] Stylianos Mystakidis. 2022. Metaverse. Encyclopedia 2, 1 (2022), 486–497. https:
//doi.org/10.3390/encyclopedia2010031

[70] Nvidia. 2023. CloudXR. Web document. https://developer.nvidia.com/blog/
deploying-xr-applications-in-private-networks-on-a-server-platform/

[71] NVIDIA. 2023. Nvidia - GPU Compilation. Web document. https://docs.nvidia.
com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation

[72] Rui Pascoal, Ana De Almeida, and Rute C. Sofia. 2020. Mobile Pervasive Aug-
mented Reality Systems—MPARS: The Role of User Preferences in the Perceived
Quality of Experience in Outdoor Applications. ACM Trans. Internet Technol. 20,
1, Article 7 (feb 2020), 17 pages. https://doi.org/10.1145/3375458

[73] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier. 2010. Large-
scale image retrieval with compressed Fisher vectors. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. 3384–3391. https:
//doi.org/10.1109/CVPR.2010.5540009

[74] Xiuquan Qiao, Pei Ren, Schahram Dustdar, Ling Liu, Huadong Ma, and Junliang
Chen. 2019. Web AR: A Promising Future for Mobile Augmented Reality—State
of the Art, Challenges, and Insights. Proc. IEEE 107, 4 (2019), 651–666. https:
//doi.org/10.1109/JPROC.2019.2895105

[75] Xiuquan Qiao, Pei Ren, Guoshun Nan, Ling Liu, Schahram Dustdar, and Junliang
Chen. 2019. Mobile web augmented reality in 5G and beyond: Challenges, op-
portunities, and future directions. China Communications 16, 9 (2019), 141–154.

[76] Qualcomm. 2023. Snapdragon XR2 Platform. https://www.qualcomm.com/
news/releases/2022/05/qualcomm-cuts-cord-new-wireless-ar-smart-viewer-
reference-design-powered

[77] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi Chen. 2019. ShareAR:
Communication-Efficient Multi-User Mobile Augmented Reality. In Proceedings
of the 18th ACMWorkshop on Hot Topics in Networks (Princeton, NJ, USA) (HotNets
’19). Association for Computing Machinery, New York, NY, USA, 109–116. https:
//doi.org/10.1145/3365609.3365867

[78] Jie Ren, Ling Gao, Xiaoming Wang, Miao Ma, Guoyong Qiu, Hai Wang, Jie Zheng,
and Zheng Wang. 2021. Adaptive computation offloading for mobile augmented
reality. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 4 (2021), 1–30.

[79] Pei Ren, Ling Liu, Xiuquan Qiao, and Junliang Chen. 2022. Distributed Edge
System Orchestration for Web-based Mobile Augmented Reality Services. IEEE
Transactions on Services Computing (2022), 1–15. https://doi.org/10.1109/TSC.
2022.3190375

[80] Justus Rischke, Peter Sossalla, Sebastian Itting, Frank HP Fitzek, and Martin
Reisslein. 2021. 5G campus networks: A first measurement study. IEEE Access 9
(2021), 121786–121803.

[81] Thiago Braga Rodrigues, Ciarán Ó Catháin, Noel E. O’Connor, and Niall Murray.
2020. A Quality of Experience assessment of haptic and augmented reality
feedback modalities in a gait analysis system. PLOS ONE 15, 3 (mar 2020),
e0230570. https://doi.org/10.1371/journal.pone.0230570

[82] Khaldoun Senjab, Sohail Abbas, Naveed Ahmed, and Atta ur Rehman Khan.
2023. A Survey of Kubernetes Scheduling Algorithms. 12, 1 (2023). https:
//doi.org/10.1186/s13677-023-00471-1

[83] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 138–152. https://doi.org/10.1145/3472883.3486981

[84] Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and Mika
Ylianttila. 2021. A survey on mobile augmented reality with 5G mobile edge com-
puting: architectures, applications, and technical aspects. IEEE Communications
Surveys & Tutorials 23, 2 (2021), 1160–1192.

[85] Huaiying Sun, Huiqun Yu, Guisheng Fan, and Liqiong Chen. 2020. QoS-aware
task placement with fault-tolerance in the edge-cloud. IEEE Access 8 (2020),
77987–78003.

[86] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. 2017. Visual SLAM algo-
rithms: A survey from 2010 to 2016. IPSJ Transactions on Computer Vision and
Applications 9, 1 (2017), 1–11.

[87] The Verge. 2023. Meta Quest 3 VR headset price details. https://www.theverge.
com/2023/6/1/23744576/meta-quest-3-vr-headset-price-details. Accessed June
27, 2023.

https://doi.org/10.1145/3445814.3446725
https://doi.org/10.1145/3230543.3230574
https://doi.org/10.1109/TCE.2016.7613201
https://doi.org/10.1109/TCE.2016.7613201
https://www.w3.org/TR/webxr/
https://doi.org/10.1145/2785989.2785993
https://doi.org/10.1109/TMM.2020.2982046
https://doi.org/10.1145/3318216.3363315
https://doi.org/10.1145/3318216.3363315
https://doi.org/10.1145/3359996.3364752
https://doi.org/10.1109/WF-IoT.2014.6803110
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3210240.3210313
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.3390/app11114758
https://doi.org/10.3390/app11114758
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/app-quality-criteria-overview
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/app-quality-criteria-overview
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/app-quality-criteria-overview
https://doi.org/10.1145/3422604.3425943
https://doi.org/10.1109/MCOM.001.2100225
https://doi.org/10.1109/MCOM.001.2100225
https://doi.org/10.3390/encyclopedia2010031
https://doi.org/10.3390/encyclopedia2010031
https://developer.nvidia.com/blog/deploying-xr-applications-in-private-networks-on-a-server-platform/
https://developer.nvidia.com/blog/deploying-xr-applications-in-private-networks-on-a-server-platform/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-compilation
https://doi.org/10.1145/3375458
https://doi.org/10.1109/CVPR.2010.5540009
https://doi.org/10.1109/CVPR.2010.5540009
https://doi.org/10.1109/JPROC.2019.2895105
https://doi.org/10.1109/JPROC.2019.2895105
https://www.qualcomm.com/news/releases/2022/05/qualcomm-cuts-cord-new-wireless-ar-smart-viewer-reference-design-powered
https://www.qualcomm.com/news/releases/2022/05/qualcomm-cuts-cord-new-wireless-ar-smart-viewer-reference-design-powered
https://www.qualcomm.com/news/releases/2022/05/qualcomm-cuts-cord-new-wireless-ar-smart-viewer-reference-design-powered
https://doi.org/10.1145/3365609.3365867
https://doi.org/10.1145/3365609.3365867
https://doi.org/10.1109/TSC.2022.3190375
https://doi.org/10.1109/TSC.2022.3190375
https://doi.org/10.1371/journal.pone.0230570
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1186/s13677-023-00471-1
https://doi.org/10.1145/3472883.3486981
https://www.theverge.com/2023/6/1/23744576/meta-quest-3-vr-headset-price-details
https://www.theverge.com/2023/6/1/23744576/meta-quest-3-vr-headset-price-details

Characterizing Distributed MAR Applications at the Edge CoNEXT Companion ’23, December 5–8, 2023, Paris, France

[88] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max Mühlhäuser. 2018. Service Entity
Placement for Social Virtual Reality Applications in Edge Computing. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications. 468–476. https:
//doi.org/10.1109/INFOCOM.2018.8486411

[89] Gesa Wiegand, Christian Mai, Kai Holländer, and Heinrich Hussmann. 2019.
InCarAR: A Design Space Towards 3D Augmented Reality Applications in Ve-
hicles. In Proceedings of the 11th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (Utrecht, Netherlands) (Automo-
tiveUI ’19). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3342197.3344539

[90] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. 2023. Transpar-
ent {GPU} Sharing in Container Clouds for Deep Learning Workloads. In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 23).
69–85.

[91] Jianghao Xiong, En-Lin Hsiang, Ziqian He, Tao Zhan, and Shin-Tson Wu. 2021.
Augmented reality and virtual reality displays: emerging technologies and future
perspectives. Light: Science & Applications 10, 1 (2021), 216.

[92] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu He,
and Yunhao Liu. 2022. {SwarmMap}: Scaling up real-time collaborative visual
{SLAM} at the edge. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). 977–993.

[93] Longyu Zhang, Haiwei Dong, and Abdulmotaleb El Saddik. 2018. Towards a QoE
model to evaluate holographic augmented reality devices. IEEE MultiMedia 26, 2
(2018), 21–32.

[94] Lei Zhang, Andy Sun, Ryan Shea, Jiangchuan Liu, and Miao Zhang. 2019. Ren-
dering Multi-Party Mobile Augmented Reality from Edge. In Proceedings of the
29th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video (Amherst, Massachusetts) (NOSSDAV ’19). Association for Computing
Machinery, New York, NY, USA, 67–72. https://doi.org/10.1145/3304112.3325612

[95] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong. 2019. Edge Video
Analytics for Public Safety: A Review. Proc. IEEE 107, 8 (2019), 1675–1696. https:
//doi.org/10.1109/JPROC.2019.2925910

[96] Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the Networking Challenges
of Mobile Augmented Reality. In Proceedings of the Workshop on Virtual Reality
and Augmented Reality Network (Los Angeles, CA, USA) (VR/AR Network ’17).
Association for Computing Machinery, New York, NY, USA, 24–29. https://doi.
org/10.1145/3097895.3097900

[97] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile
Augmented Reality with Flexible Tracking. In Proceedings of the 26th ACM
International Conference on Multimedia (Seoul, Republic of Korea) (MM ’18).
Association for Computing Machinery, New York, NY, USA, 355–363. https:
//doi.org/10.1145/3240508.3240561

[98] Wenxiao Zhang, Bo Han, and Pan Hui. 2022. SEAR: Scaling Experiences in
Multi-user Augmented Reality. IEEE Transactions on Visualization and Computer
Graphics 28, 5 (2022), 1982–1992. https://doi.org/10.1109/TVCG.2022.3150467

[99] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang, Xuan Kelvin
Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy, Matthew Lentz, et al.
2022. Dissecting Service Mesh Overheads. arXiv preprint arXiv:2207.00592 (2022).

https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1145/3342197.3344539
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1109/JPROC.2019.2925910
https://doi.org/10.1109/JPROC.2019.2925910
https://doi.org/10.1145/3097895.3097900
https://doi.org/10.1145/3097895.3097900
https://doi.org/10.1145/3240508.3240561
https://doi.org/10.1145/3240508.3240561
https://doi.org/10.1109/TVCG.2022.3150467

CoNEXT Companion ’23, December 5–8, 2023, Paris, France Giovanni Bartolomeo, Jacky Cao, Xiang Su, & Nitinder Mohan

Number of Clients
0

3

6

9

Ji
tt

er
(m

s)

Number of Clients
0
1
2
3

Ji
tt

er
(m

s)

1 2 3 4
Number of Clients

0
1
2
3

Ji
tt

er
(m

s)

a)

b)

c)

Figure 10: Jitter results
from a) baseline edge, b)
service scalability, and c)
cloud deployment.

Number of Clients
0

5

10

15

F
P

S

[E1,C,C,C,C]

1 2 3 4
Number of Clients

0

50

100

150

S
er

vi
ce

L
at

.
(m

s)

primary

sift

encoding

lsh

matching

Figure 11: Impact of distribut-
ing to the edge and cloud in a
hybrid setup.

0

100

F
P

S

N. Clients = 1 +1 +1 +1

primary sift encoding lsh matching

1 25 50 75 100
Experiment Time (%)

0.0

0.5

D
ro

p
R

at
io

Figure 12: Sidecar analytics correlating each scAtteR++ ser-
vice’s framerate to request drops from the queue. All services
are deployed on E1.

0

10

20

30

F
P

S

0.00001% 0.01% 0.08%

1 2 3 4
Number of Clients

0

20

40

60

E
2E

L
at

.
(m

s)

a)

0

10

20

30

F
P

S

1 ms 5 ms 10 ms 40 ms

1 2 3 4
Number of Clients

0
25
50
75

100

E
2E

L
at

.
(m

s)

b)

Figure 9: Impact of varying network conditions, specifically
packet loss (a) and latency (b), on scAtteR with increasing
concurrent clients.

A APPENDIX
A.1 Additional Experiments
A.1.1 Mobile Connectivity. The vision for AR hardware manufac-
turers and application developers is to enable use cases wherein
clients with wireless AR glasses interact with objects in the envi-
ronment, enabling usecases like augmented tourism, augmented

navigation, etc. [76]. To emulate such setups in our infrastructure,
we deploy the pipeline on E2 and use tc [58] to introduce packet
loss artificially and latency in the link connecting the clients to the
pipeline ingress primary. Our latency and loss values are inspired
by recent measurement studies. Specifically, we emulate LTE (40
ms RTT and 0.08% loss) [32], 5G (10 ms RTT and 0.00001 - 0.01%
loss) [80], and WiFi-6 (5 ms RTT and 0.00001 - 0.01% loss) [64]. To
emulate mobility, we add 10 ms delay oscillation with 20% prob-
ability, and we perform loss measurements with 1 ms delay and
latency measurements with 0.00001% loss.

Figure 9a shows that packet loss variations do not drastically
impact end-to-end performance but limit the framerate throughput
due to frame drops. However, packet loss seems to affect the success
rate of the frame transmission and, consequently, the FPS. Interest-
ingly, higher network loss shows minor performance improvement
at higher concurrent clients (see fig. 2) due to reduced load at con-
gested services. Similar to packet loss, we do not observe a signifi-
cantly notable impact of latency on application performance (see
fig. 9b). Note that the experiments were conducted with scAtteR,
which does not drop packets if it exceeds a timing threshold (unlike
scAtteR++). As a result, frames that were no longer within the max-
imum tolerable 100 ms end-to-end latency with 10 ms and 40 ms
settings were not dropped – resulting in a consistent framerate.

A.1.2 Hybrid Edge-Cloud Deployment. Figure 11 shows the prelim-
inary performance of scAtteR in hybrid edge-cloud deployment.
We deploy the ingress primary service on E1 while the rest of the
pipeline is on the cloud. We also tested other configurations that
decoupled the pipeline across E1, E2 and cloud but found significant
artifacts due to state dependencies between sift and other func-
tions. We find that scAtteR’s performance severely degrades in
hybrid settings, largely due to increased frame drops across services
deployed on edge and cloud machines. Note that improved network
protocols [19, 40, 68] instead of UDP may help alleviate this, which
we plan to explore in future extensions.

A.2 Sidecar Queue Application Analytics
We extend the sidecar in scAtteR++ to access service QoS metrics,
allowing us to correlate queue drops with per-service framerate
(see fig. 12) as we periodically increase the client load (vertical blue
lines). We observe that all services keep up with the increasing
load until we introduce the third client. At 90 FPS input rate, each
service, except primary and sift, show reduced framerate, with
encoding service dropping almost 50% of packets from the queue.
This is because while sift is able to process frames at line rate, the
requests have already spent significant time in the queue waiting to
be serviced. Note when sift drop ratio is at its apex, encoding re-
ceives only ≈ 60FPS. Our results highlight the possibility of a better
holistic understanding of virtualized AR application performance
by correlating QoS with hardware-level metrics.

	Abstract
	1 Introduction
	2 Related Work
	3 System Design & Setup
	3.1 scAtteR: A Distributed AR Pipeline
	3.2 Experiment Setup

	4 Evaluation
	5 scAtteR++
	6 Conclusion & Future Work
	References
	A Appendix
	A.1 Additional Experiments
	A.2 Sidecar Queue Application Analytics

